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Abstract. Earlier, the criterion of minimum material consumption was formulated within the 

outline design of the I-shaped bar width and the stability constraints or restriction to the value 

of the first natural frequency in one principal plane of the cross-section inertia. In the 

distinctive paper, we formulate a criterion for the minimum material capacity of the I-shaped 

bar with a variation in its thickness and outline of the width, with restrictions on the value of 

the critical force or restriction to the value of the first natural frequency in two principal planes 

of the section inertia. 

1.  Introduction 

I-shaped bars are under consideration. The adopted coordinate system is shown in Figures 1 and 2. 

 

 

Figure 1. Adopted coordinate system. 

 

The criterion of the minimum material consumption within the design of the width outline of the I-

shapedbars flange and the stability constraints or restriction to the value of the first natural frequency 
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in one principal plane of the cross-section yx  0  inertia is presented in [1]. In some cases, it 

becomes necessary to introduce restrictions on the value of the first critical force or natural frequency 

in the second principal plane of inertia zx 0 . In these cases, it becomes possible to vary within 

optimizing not only the width outline of the flange, but also its thickness. 

2.  Formulation of problem 

The function of the flange width ( )(2 xb ) and the thickness ( p ) of the flange are varied. The web 

height ( 1b ) and web thickness ( st ) are not varied. The values of the first critical force or the natural 

frequency in two principal planes of inertia are limited. The influence of the longitudinal (axial) force 

on the value of the natural frequency and the possibility influence of a given frequency vibrations on 

the value of the critical force are taken into account. Target functional has the form: 



l

pdxxbV

0

20 )(2  ,                                                             (1) 

where 0V is flange material volume; pxb )(2 2  is cross-sectional area of flanges. 

Let us derive, under the conditions set, the criterion of the flange minimum material consumption, 

with restrictions to the value of the first natural frequency with allowance for influence of longitudinal 

force. The criterion formulated in this way can also be used for stability constraints if we define zero 

value of the natural frequency in it. 

Restrictions to the value of the first natural frequency have the form 

]1[10   ;                                                                  (2) 

]1[20   ,                                                                 (3) 

where 0  is the number, which limits the value of the lowest natural frequency; ]1[1  is the lowest 

natural frequency in the plane yx  0 ; ]1[2 is the lowest natural frequency in the plane zx  0 . 

If we take the constraints in the form 

]1[2]1[10   ;                                                             (4) 

then we have 

0]})()([)())(())(({
2

1

0

2222

11  
l

O dxvxFxmvxPvxEI   ;                     (5) 

0]})()([)())(())(({
2

1

0

2222

22  
l

O dxwxFxmwxPwxEI   ,                   (6) 

where 1  and 2  are energy functional of natural oscillations in the principal planes of inertia; 

)(1 xI  and )(2 xI  are the corresponding moments of the cross-section inertia; E  and   are 

respectively, the modulus of elasticity and the specific mass of the bar material; )(xP  is longitudinal 

force; )(xm  is external mass intensity; )(xF  is cross-sectional area of the bar; v  and w are 

ordinates of the forms of natural oscillations, respectively, in the principal planes of inertia yx  0  

and zx  0 . 

Thus, it is required to find such a function of variation the flange width )(2 xb  and such a value of 

the flange thickness p , which provide minimum of (1) flange volume functional and fulfilment of the 

conditions (5) and (6). 

3.  Theoretical foundation of solution procedure 

A functional which extremum ensures the minimum of the functional (1) and the fulfilment of 

conditions (5) and (6) can be written in the form 
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                 (7) 

where 1  and 2  are undetermined coefficients. 

Taking into account the relations (5) and (6), considering problem is isoperimetric; 1  and 2  are 

constants. It is obvious that variations of the functional 0V with respect tov  and w lead to the 

equations of natural oscillations in the principal planes of inertia. Variations of the functional 0V  

with respect to 1  and 2  lead to fulfilment of the conditions (5) and (6). 

The moments of the cross-section inertia can be written in the form 
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The functional (7) takes the form 
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The extremum of the functional (10) is determined by solution of the system of equations [2] 
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or in expanded form 
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We transform some expressions from equations (12) and (13). We consider the following 

expression from the second equation the expression: 
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Let us multiply the numerator and denominator of (14) by
2

1 )]([ xI . As is known  



APCSCE

IOP Conf. Series: Materials Science and Engineering 456 (2018) 012005

IOP Publishing

doi:10.1088/1757-899X/456/1/012005

4

 

 

 

 

 

 

)()( 11 xMvxEI  .                                                         (15) 

Is a bending moment in the plane yx  0 . It is obvious that 




1

1

11

)(2

)2)((




xI

bxM p
                                                      (16) 

is normal stress in the outer fibers of the bar cross-section. Let us introduce the notation 

)( 111 pbbb   .                                                          (17) 

Then (Figure 1) 


 1

1

11

)(2

)(
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xI

bxM
                                                          (18) 

is normal stress in the fibers of the bar cross-section spaced from the neutral axis by a distance 

)(
2

1

2

1
111 pbbb   .                                                       (19) 

Expression (14) can be written in the form 
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Analogously we have 
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where 

)()( 22 xMwxEI  .                                                           (22) 

Is a bending moment in the plane zx  0 ; 

)(
)(2

)()(
2

2

22 x
xI

xbxM
 .                                                        (23) 

Is normal stress in the outer fibers of the bar cross-section, caused by bending moment )(2 xM . 

Taking into account transformations carried out, equations (12), (13) can be rewritten in the form 
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   (25) 

We multiply all the terms of the equations (24) and (25) by E , the terms of the first equation are 

also multiplied by p  and terms of the second equation are also multiplied  by )(2 xb . Let us denote 

the cross-section area of the flange 

)()(2 xFxb pp                                                                (26) 

and integrate the second equation in the range from 0 to 1. Then we have 
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The difference between the equations (27) and (28) is defined by formula 
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From (29) it follows that 
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Equation (25) can be rewritten in the form 
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Multiplying the terms of this equation by E  and dividing by p2 we get 
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Hence we obtain 
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or 
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Thus, it is shown that the criterion of the minimum material consumption of the I-shaped bar, when 

the shape and thickness of the flange vary, and the height and thickness of the web do not vary with 

the stability constraints or restriction to the value of the first natural frequency, will be the constancy 

along the length of the bar of the reduced stresses )(1 xt  arising in the corresponding natural mode 

under natural oscillations or loss of stability. 

If the value of the first natural frequency is limited and longitudinal force exists, criterion (35) 

doesn’t take it into account. Under the action of only stability constraints 00  is substituted in (35). 
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The reduced stresses are normalized so that the largest value of each of )(1 x along the length of 

the bar is equal to unity. Then the closeness of the solution obtained to the minimum material-

intensive solution is estimated by the closeness of the value )(1 x  to unity along the entire length of 

the bar. 

The criterion obtained in this paper, as well as those obtained earlier (presented, for instance, 

in [3 - 6]), can also be used for problems solution of structures optimal reinforcement and generally for 

corresponding problems solution of structural analysis [7-10]. 
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