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Abstract. The paper presents a mathematical model of oscillations of a cylindrical shell, filled 

with liquid after exposure to a shock wave created by an air explosion. Two models are applied 

to the description of behavior of a shell depending on duration of external loading, namely the 

model of the tangent modulus for pulse action and the model of the elastic modulus for quasi-

static influence. Levels of the maximum pressure and impulse are determined for a real-life 

tank using these models at which a loss of stability occurs for one of the shape of flexural 

deformations. Critical curves of stability in the «maximum pressure–impulse of pressure» 

plane are also developed.  

1.  Introduction 

The analysis of accident of fuel storage shows that there is a possibility of contingency occurrence that 

arise when external impulse loads are applied to these facilities. Such loads can lead to the loss of 

stability of a tank shell. 

This research is devoted to the problem of the cylindrical fluid tanks stability loss under the action 

of external impulse. 

2.  Literature survey 

There is a number of works, for example [1-6], in which questions of stability of shells are considered. 

The novelty of this research is that the stability of fuel storage under action of an air explosion shock 

wave is calculated by constructing the critical curves of stability, which are obtained by numerical 

integration the equation of movement of smooth cylindrical shell. 

In addition, the mass of fuel is taken into account in oscillatory process by inclusion the attached 

fluid mass in the governing equations. The attached fluid mass arises if the tank is filled with liquid. It 

increases lag effect of the system that, undoubtedly, has to be taken into account. 

3.  Method description 

It has been experimentally established that the character of the tank shell stability loss at the influence 

of an air explosion shock wave depends on the maximum pressure and the duration of loading action. 

Depending on these parameters, three areas of impact are allocated in the “maximum pressure – 

impulse of pressure” ( P - I ) plane and a loading area (Figure 1):  

 Impulse function (loading of a small duration); 
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 Quasi-impulsive function (loading of an intermediate duration); 

 Quasi-static function (a long loading). 

 
Figure 1. Critical curve of shell stability loss 

for various impulse durations. 

 

The possibility of stability loss of the shell of cylindrical tank at impulse and quasi-static loadings 

is studied in this work. In Figure 1, it can be seen that the quasi-impulsive section occupies rather 

small range therefore it hasn’t been examined by the authors. 

To describe the behavior of the cylindrical tank shell at impulse function, the model of the tangent 

modulus is applied and at quasi-impulsive – an elastic deformation modulus. 

The settlement scheme of the tank at the influence of an air explosion shock wave is a smooth 

cylindrical shell. Therefore the equation of the movement of smooth cylindrical shell can be used in 

both cases. The fluid in the tank is supposed to be ideal and incompressible. 

3.1. Modelling of load 

The considered load is a shock wave produced by an air explosion. The most essential characteristics 

of the load are the maximum pressure mP  and the pressure impulse I  referred to the unit of the shell 

surface. Thus, we use just these values for assessment of stability of the shell. 

Change of shock wave pressure P in time t  depends on the distance to the explosion point and is 

expressed by exponential dependence. In this case, the area of the graph under the exponential is the 

pressure impulse. In calculations, the exhibitor of pressure can be replaced with a triangle (Figure 2) 

where P  is pressure in the shock wave, mP  is the maximum pressure, t  is current time,   is total time 

of the shock wave action, I  is the total pressure impulse. 

 Figure 2. The shape of applied load.  

 

In the case of triangular dependence of the applied load, the relationship between the composite 

impulse of pressure and the maximum pressure is represented by the following formula: 

 
mPI
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1
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 (1) 
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The most dangerous emergency situation for the constructions of the type considered is the case of 

shell loading by the shock wave of air explosion. This impact is of very short duration but with a 

considerable peak of the maximum pressure. Therefore the main settlement case is described by the 

model of the tangent modulus.  

3.2. The Tangent modulus model 

It is experimentally established that at pulse loading the influence of the shell length on stability 

loss is insignificant. Therefore, in the model of the tangent modulus it is enough to consider the loss of 

stability of a ring without taking into account the effect of the liquid. 

We will use the equation of the movement of the ring given in [6]: 
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where Ruw  , Ruw
ii

  are the dimensionless movements;  tu ,  is the radial movement of the 

shell (positive at inside movement);  tui ,  is the deviation of initial shape of the shell from 

cylindrical one;   is the  angular coordinate; R  is the shell radius; h  is the shell thickness; E  is the 

elasticity module of the shell material; 
t

E  is tangent modulus of elasticity of the material beyond a 

proportional limit;   is tangential membrane tension;    tpEhRp ,'   is dimensionless pressure. 

Dimensionless time is defined as  

ERtt ' , 

where   is the shell material density. We will set a form of dynamic and initial deflections as well as 

external pressure by the following dependences: 
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where i  is teh initial deviations of the shell from the correct geometrical shape. 

Designating   222 12 Rh , then substituting lines (3) in the equation (2), we receive the system 

of equations: 

 
     inntn nEpwEEEnnw  11 2222   (4) 

 00 pEw   (5) 

Dimensionless movements    coincide with the ring deformation, therefore their values are small 

in comparison with one, and in the equation (5) they can be neglected. 

At the initial moment, the shell is in a rest therefore the zero initial conditions are accepted.  

The coefficient in expression (4) at    becomes negative at rather big deformations. Consequently, 

the solution loses an oscillatory view and has the nature of hyperbolic function. Therefore there is an 

exponential increase of the solution that makes it possible to consider as the indication on the 
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possibility of residual flexural deformations existence, i.e. on the possibility of stability loss. Thus, the 

condition of stability is defined by a positive value of the coefficient before deflection    in the 

expression (4), i.e.:  

 022  EEEn t   (6) 

To determine the value of the tangent modulus Et, data of the "tension-deformations" charts are 

used. The ratio /Et outside the plasticity zone linearly depends on deformation. As a result, it is 

possible to use in calculations such expressions: 
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where   is the flowing deformation; Ess    is the deformation of the beginning of flowing; s  is 

the  cover material fluidity limit. 

In this case expressions for the tangent modulus are as follows:  
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where k  is the tangent tilt angle to the chart "tension deformation". 

To change parameters of a shock wave (to make it "softer") is possible by covering the shell with 

easily compressible material, for example, rubber. Passing through this covering the shock wave is 

transformed as follows. The peak of the pressure decreases but the period of its action increases, 

keeping an initial impulse of the shock wave. 

In this case oscillatory process of a cylindrical shell becomes slower. This explains the necessity of 

the transition to the model of stability loss at an elastic stage of deformations. 

3.3. Elastic modulus  

We suppose that the shell has some unevenness of the surface coinciding in shape with the deflections 

at stability loss. At uniform load, loss of stability does not occur without this assumption. The 

assumption made doesn't change the basic regularities of the process under study, but significantly 

simplifies its theoretical analysis. It allows using the equation of the movement of a smooth cylindrical 

shell within a linear substitution [7]: 
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 (9) 

where   23 112  EhD  is cylindrical stiffness;   is the Poisson’s ratio; x  is a linear coordinate; 

am  is the attached fluid mass at the movement of the shell by stability loss forms. According to the 

theory of long waves we have  

  la nRm  , 

where l  is a density of a liquid filler.  

Shapes of dynamic and initial deflections are given by following dependences: 
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where LLk ,  is a shell length. We express the external pressure  tp   in (9) through the radial 

compression of the shell (excluding axial forces): 

  2
0'' REhutp   

Substituting the series (10) in (9) and equating coefficients in each member to zero, we receive: 

 
  innnnnn ubuubcua 00  ,

 (11) 

 
 ''0000 tpucua  ,

 (12) 

where coefficients at variable deflections of the shell are as follows: 
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The coefficient 0a  in (14) is shown for the tank filled with fuel considering the attached mass of a 

liquid filler *
lm . The impact of the attached mass of a liquid filler on fluctuations of a cylindrical shell 

under the influence of dynamic load is described in details in the research [8] according to which: 

   2* 238 RLm ll  . 

As well as in the models of the tangent modulus, the condition of stability is also defined by a 

positive value of coefficient at nw   in the expression (11), i.e.: 

 
00  wbc nn  (15) 

In a dimensionless structure, taken for the main sizes RE ,, , elastic model is expressed as: 
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where the coefficients are defined by formulas 



APCSCE

IOP Conf. Series: Materials Science and Engineering 456 (2018) 012053

IOP Publishing

doi:10.1088/1757-899X/456/1/012053

6

 

 

 
  















































R

h
c

m

R

h
a

RknRk
R

h
c

nRknb

nRk
nh

R
a

l

n

n

l
n

0

*

0

444222

22

2

22222

2222

112

1









 

To use an elastic modulus, it is necessary to be convinced that the maximum hoop stress doesn't 

exceed the fluidity limit of the shell material. If this condition is not met, then it is possible to use the 

model of the tangent modulus.  

4.  Research results 

The general problem of the assessment of shell stability both for impulse, and for quasi-static load 

consists in determining the maximum pressure levels mP  and the impulse I  at which for any 'one 

form of flexural deformations there will be such growth of displacements that characteristic the 

stability conditions (6, 15) are violated.  

The research of shell stability is conducted on the example of a vertical steel cylindrical tank for 

diesel fuel storage with a stationary roof with a capacity of 1000 3m , located in Sevastopol, the 

Crimean Republic. This object has the following characteristics: 

.12,820,7800,2.5,3.0,006.0,101.2 335 mLmkgmkgmRmhMPaE l    

The tank shell is exposed by the shock wave of air explosion. This load is applied in the form of a 

triangular impulse (Section 3.1 of this work). 

As a result of numerical integration of the equations of shell movement (4, 5, 11, 12), the pair of 

maximum pressure mP  and impulse I  were found (points in Figure 3), at which the coefficients of 

movements in expressions (4, 11) becomes negative for a number of values forms of flexural 

deformations n (characteristic condition of stability (6, 15) becomes violated). As a result, by 

connecting the obtained points on the graph, we get a critical curve of stability for the tank under 

study, which is illustrated in Figure 3: 

 

Figure 3. Critical curves of stability loss. 

5.  Conclusion 

In this work, mathematical models for determining the critical curves of stability loss in the maximum 

pressure-impulse of pressure plane for a smooth cylindrical shell for loading areas of different duration 

are proposed. 

By numerical integration, an example of a critical curve for a real-life vertical steel cylindrical tank 

in the field of plastic and elastic deformations was calculated. 

The critical curve of stability loss in the field of impulse loads was calculated using the tangent 

modulus model (the upper part of the curve in Figure 3). 
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The critical curve of stability loss for quasi-static loads was calculated from the elastic modulus 

(the lower curve in Figure 3). 

 The curves obtained are well coordinated with results of the experiments which are described in 

many sources, for example, in [6]. 

6.  Prospects of further researches  

The equations (4, 5, 11, 12) of calculating and constructing critical curves of stability presented in this 

research cannot be solved analytically. However, the numerical integration of these equations gives 

sufficiently accurate solution consistent with the experimental results which are described in many 

papers, for example, in [6].  

These methods can be applied to any structures whose design scheme can be represented as a 

smooth cylindrical shell. From the formulas given in this research it can be seen that these curves 

depend on many geometric parameters (thickness, diameter, shell length) of the structure under 

consideration. By adjusting these parameters (for example, the ratio of the radius to the thickness or 

the length ratio to the diameter), one can achieve an extension of the stability area of the shells under 

consideration. 

These researches will help to make the design of constructions of the type considered more reliable 

and effective. 
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