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Abstract. The paper studies the problem of criteria selection for limit states of monolithic 

reinforced concrete bearing systems in the progressive collapse mode. Based on the design 

assumptions and theoretical studies outcome, structural elements and structural units of the 

monolithic reinforced concrete buildings are defined; the destruction of them occurs primarily 

in the event of failure of the vertical supporting structure and leads to the evolution of 

progressive collapse. A computational and theoretical analysis has been performed to 

determine the ultimate deformation effects or load values according to those criteria that 

determine the bearing capacity of the core units of monolithic reinforced concrete systems of 

different spans. It is proved that as a basic criterion to estimate the stress-strain state of the 

monolithic reinforced concrete structures in view of the failure of a vertical bearing system 

there can be adopted relative deformation value corresponding to the formation of a ‘fracture’ 

zone of the near-support slab section under the action of transverse forces. 

1. Introduction and task statement  

Stability evaluation of the load-bearing system in the event of individual load-bearing structure failure 

or when a local defect is created in the structural system is one of the most important tasks in the 

process of the safety level assessing of the building bearing system in its entirety. In some cases, this 

task is stated as an estimate of the structure survivability [1, 2, 3] which seems to be a justified 

approach. The legislative document in force [4] outlines requirements to ensure mechanical safety of 

buildings and structures in the event of an emergency design situation. ‘In a process of designing an  

increased criticality rating facility, an emergency design situation must also be taken into account ... 

which is important because of the reaching limit states consequences that can be generated in this 

situation (including the limit states arising in connection with explosion, collision, emergency 

situation, fire, and also right after the failure of one of the supporting structures)’. Following further 

requirements description [4], the government standard [5] introduces a new kind of limit state: ‘special 

limit states, namely the states arising from particular impacts and situations exceeding, which leads to 

the failure of structures with disastrous consequences’. 

The definition of special effects is studied in detail by Code of Regulations [6] which defines that 

‘the impact caused by particular emergency effects needs to be taken into account in the calculation to 

determine the structures progressive collapse. ... Calculation for the structures progressive collapse 

may be considered not compulsory if special measures are ensured which exclude progressive collapse 
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of a structure or part thereof’. At that, the wording of the standard [5] contains certain criteria only for 

previously known and used in practice limit states of the first and second groups. The new term 

‘special limit state’ is not given any regulatory definitions or characteristics. 

Consequently, the compliance with the requirements of the Russian Federation legislation in force and 

regulatory documents covering the stability of the load-bearing system analysis in the event of 

individual load-bearing structure failure (i.e. in response to a special limit state) is not fully grounded 

by the regulatory criteria. This leads to ambiguity in approaches to assess the stability of load-bearing 

systems with progressive collapse and to evaluate the efficiency of ‘special measures which exclude 

the progressive collapse of a structure or part thereof’. 

In order to justify the approaches to the special limit states criteria evaluation, it is required to 

determine the operational aspects of the supporting system of the building structure when one of the 

supporting elements fails. One of the initial guidelines and regulations dealing with the problems of 

progressive collapse [7] outlines that ‘stability of a building against progressive collapse will be 

ensured if the following condition is met for any element: 

 

F≤S  (1) 

  

where F and S are force in the element taken from the elastic analysis and its design load-bearing 

capacity respectively calculated taken into account the guidance of Item 3 [7]’. Pursuant to [7], it can 

be admitted that the structures are operated under the conditions of plastic deformations development; 

still the degree of plastic deformations is determined implicitly, namely through the reliability 

coefficients to the strength characteristics of the materials. 

The structure operational principle in the mode of inelastic (plastic) deformation under special 

conditions of the operational period is widely used: in the context of seismic and explosive effects, in 

the work sites conditions. Thus, there is a method proposed to take into account the inelastic 

deformation of the building structures under seismic effect based on the parameter in [8] ‘building 

state in the aftermath of an earthquake which is defined as the maximum tolerated value of ‘residual 

deformations’. The author of [8] shows that ‘residual deformations’ are the result of the structures 

operational condition outside the elastic phase. 

Theoretical studies to determine ‘permissible damage-behavior ratio’ are normally based on 

plasticity characteristics of the structure (plasticity coefficient μ), or on the structural damage 

parameter (‘damage index of the structure’ D); for details see further [9, 10, 11, 12, 13, 14] in which 

various approaches to determine these parameters are proposed: a) by curvature (for reinforced 

concrete elements); b) by plastic range of turning angle (for reinforced concrete elements); c) by limit 

state of deflection; d) by accumulation of damage (for reinforced concrete elements); e) by stiffness 

reduction when loading reinforced concrete elements (criteria parameter is the section curvature); f)  

based on fatigue assessment; g) based on absorption of energy by the structure, and by a number of 

other ones. 

In [15] the method of estimating the permissible level of damage is described based on the 

plasticity coefficient μ determined by deformation characteristics; therein the method is further 

justified for the most frequently implemented reinforced concrete bearing structures of various types: 

tot

el





   

 

(2) 

where εtot and εel are total and elastic relative strains of the structure respectively. 

In this regard, there should be set reasonable restrictions for the value of total relative strain. For 

instance, the following value is deemed reasonable for the basic structural anisotropic materials: 

 

max 0.85 tot   (3) 
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It should be noted that, according to the described above method, the plasticity coefficient μ is 

determined on the basis of deformation parameters subject to thorough control and that provides for an 

acceptable accuracy level. 

In order to protect the load-bearing systems against progressive collapse, various approaches are 

proposed, i.e. the method of the load-bearing capacity increase for the structural elements beyond the 

required results generated by elastic calculation. For the most common types of load-bearing systems, 

namely multi-storey and high-rise buildings with the load-bearing structures of monolithic reinforced 

concrete, the method of protection against progressive collapse based on the arrangement of the 

increased stiffness floors (outrigger floors) is proposed and justified (ref. [16]). The method ensures a 

change in operational pattern of the vertical support structure in the failure event of the underlying 

element; such structure is ‘suspended’ to the outrigger floor. The operating principle of the outrigger 

floor as a structural unit ensuring ‘suspension’ of vertical bearing structures is fully consistent with the 

definition of a ‘special measure excluding progressive collapse of the structure or part thereof, which 

contributes to its wide implementation in high-rise reinforced concrete construction projects. 

Nonetheless, the absence of sufficient characteristics of the limit states of the load-bearing 

structures for a special limit state in the event of  bearing element failure with allowance for the 

tolerated level of structures plastic deformation does not permit to fully and reasonably take into 

account the operation plastic phase of the outrigger floors structures which seems completely 

admissible. 

Apparently, the value of the plastic phase degree for the structure operation should have reasonable 

limitations. Such limitations are determined not only by the outrigger floors layout, but also by the 

condition of all other elements of monolithic reinforced concrete bearing system. Thus, the most 

sensitive elements of the main load-bearing system of a reinforced concrete building are monolithic 

reinforced concrete floors [17]. It is proved in light of the analysis outcome [17] that localized 

fractures are formed primarily in the near-supporting zones. The extent of such localized fracture 

zones and their characteristics are mainly determined by the structural rigidity of the outrigger floor. It 

is evident to build an outrigger floor of high rigidity massive structures that will solely operate in the 

elastic stage and ensure minimal deformation values of the suspended ceiling. Nevertheless, such 

methods to ensure protection against progressive collapse conflict with the reasoning of economic 

feasibility. 

2. Models of monolithic reinforced concrete structures to proceed with the analysis of the  

fractures formation under the conditions of failure of the carrier system element 

In order to determine the utmost tolerated deformations in the structures of outrigger floors, it is 

compulsory to analyze the processes of the fractures formation in the bearing system core elements 

(monolithic reinforced concrete slabs), as well as the mechanisms leading to the formation of such 

fractures. Within the scope of this study, such analysis is performed by numerical methods based on 

finite element models of typical floors of spans different dimensions and structures stepping: from 3.0 

to 7.2 m (the general view of the model is shown in Figure 1). 

 

 

 

Figure 1. General view of the typical floor model with spans of 6.0 m. Circled in the centre is the 

zone where a column in the last row is missing (“failure” of the structure). 
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The design model corresponds to a typical floor slab with a set of supporting vertical structures, 

namely columns. The design analysis is performed in the examination mode of the reinforced concrete 

section capacity using the SCAD computing complex [18]. The analysis of the load-bearing capacity 

of the slab model elements carried out in accordance with the provisions of the current norms [19]. 

The monolithic reinforced concrete slab is approximated by finite shell-type elements as per the 

Mindlin-Reissner plate theory with the finite elements dimensions of 200×200 mm (main slab surface) 

and 50×50 mm (in the near-support zone). The contact zone between the column and slab is modeled 

using an all-solid body. 

In view of the impact, the support zones movement of the slab above the “failed” column was 

considered. The displacement varied from zero to the “tolerated” value (spaced at 0.5 mm) 

corresponding to the moment of the fracture zone formation (Figure 2). 

 

 

Figure 2. Layout of the design model and deformation load effect created in order to analyze the 

fracture process of the slabs’ near-support zones. 1 – zones under analysis to determine load-bearing 

capacity; 2 – deformation effect. 

 

In addition to the deformation effect, the values of equivalent applied forces onto the slab in the 

zone of the ‘failed’ column were determined, and contributed to the generation of displacement value 

of the reference support zone equal to the ‘tolerated’ value. The calculation of the force factor is made 

to reveal correlation between the deformation and force effects. In accordance with the results of 

studies [20], by the limiting value of the localized fracture it is adopted a section of the ‘destroyed’ 

finite elements within one surface of the column support loop. 

3. Numerical studies outcome for the elements limit states in the monolithic reinforced concrete 

bearing systems in the event of the support structures failure 

The process of the fracture formation in the slabs in the near-support zone has a dominant 

consistent character: the exhaustion of the bearing capacity begins with single finite elements and 

when the load factor (displacement value) increases; the number of ‘destroyed’ finite elements 

increases with the formation of the ‘destroyed’ finite elements within one surface of the column 

support loop, and which corresponds to ‘destruction’ of the near-support zone (Figure 3).  

 

 (a)  (b) 

Figure 3. Various phases of fracture formation of the near-support slab zone. (a) – “destruction” of 

single finite elements, (b) – formation of the “destructed” finite elements area within one surface of 

the column support loop. 
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Destruction of the near-support slab zone measured by different criteria (transverse force and 

bending moment) occurs at quite different displacement values of the section above the failed support 

element: formation of the destroyed near-support zone occurs at significantly lower transverse forces 

than if compared with the bending moment criterion (Figure 4). 

The values of “marginal” displacements (in absolute values) correlate well with “failures” of the 

same type of support structures (middle column, edge column, corner column) with increase slab in 

span (Figure 5).  

 

 

Figure 4. Values of “tolerated” displacements for various criteria of the near-support slab zone 

formation (middle column). 

 

 

Figure 5. Values of “tolerated” displacements in relative values for various spans/steps of the support 

slab structures. 

 

The outcome of the applied forces determination equivalent to the values of ‘tolerated’  

displacement values in comparison with deformation effects prove that there is no correlation 

between force and deformation effects (Figure 6). Consequently, the use of the force impact does not 

provide a correct estimate and cannot be considered as a criteria parameter.  

The obtained values of the ‘tolerated’ displacements corresponding to the ‘fracture’ formation in 

the near-support zone under the failure conditions of the support structure enable to proceed with the 

calculations of the utmost permissible values of the plasticity coefficients μ (in accordance with (2)) 

and shift to determining the values of the admissible damages (as per [21]). 

Based on the results of the performed numerical studies, the plasticity coefficients corresponding 

to the maximum permissible deformations for different spans of the bearing system are obtained. For 

instance, the plasticity coefficients in the event of “failure” of the corner column are given in 

Figure 7.  
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(a) (b) 

Figure 6. Comparison of the applied load factors for the conditions of ‘destruction’ formation in the 

near-support slab zone. (a) – failure of the edge column, (b) – failure of the middle column. The 

absolute values of displacements (mm) and the values of the tolerated force factor (tons) on the 

vertical axis are given; A is the deformation and B is the force factors. 

 

 

 

Figure 7. Coefficients of plasticity µ in “failure” event of the corner column. 

 

Reasonable values availability of the core elements tolerated plasticity of monolithic reinforced 

concrete systems is the basis for further values determination of the permissible damage level, which 

allows for correct assessment of the outrigger floors operation efficiency as special measure that 

prevents against progressive collapse of the structure. 

4. Conclusion   

The undertaken studies justify the possibility to use deformation criteria to estimate the stress-strain 

state of the monolithic reinforced concrete structures under the failure conditions of the vertical 

element of the bearing system. The studies prove that as the main criterion to assess the stress-strain 

state for the monolithic reinforced concrete structures can be considered relative deformation 

corresponding to the formation of the ‘fracture’ area of the near-support slab zone under the impact of 

transverse forces. 

The force factors modeling the impact in the failure mode of the bearing structure do not reveal 

acceptable correlation with the bearing capacity exhaustion of the near-support slab zone, which does 

not allow them to be taken into account while the processes analyzing taking place in the monolithic 

reinforced concrete bearing systems under the conditions of progressive collapse. 

The determined characteristics of ultimate plasticity and corresponding characteristics of the 

permissible damage level, in fact, prove to be the characteristics of the limit states of monolithic 

reinforced concrete structures for the progressive collapse mode. 
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