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Abstract. The mathematic model of dynamic process into beam, which lies on the elastic 

foundation Winkler's type, at sudden change of boundary conditions caused by destruction of 

supporting is presented in the paper. Solution of static bending problem for such beam clamped 

at two ends is the initial state for dynamic process of it forced oscillations as cantilever rod at 

destruction of supports limiting edge displacements. The effect, which caused by sudden 

transformation of computational model of constructively nonlinear system 'beam - foundation' 

at different combinations of mechanical and geometrical parameters of beam and foundation, is 

investigated. 

1.  Introduction 

One of the important problems of Structural Mechanics is response analysis of new and operating 

building and structures to different changes of project solutions, variation of external impacts, 

structural transformations under load and other accidental impacts. [1, 2]. 

In recent years, the survivability and safety problems of designing, operating and reconstructing 

construction and structures become one of the most important problems [3–6]. At first, it determined 

by significant wear of buildings and structures, growth of different kind of technogenic and 

anthropogenic aggressive impacts, terrorism, not qualitative reconstruction etc. Analysis of Russian 

and abroad technical literature shows that there is small quantity of formulations of such problems and 

methods to solve it, which would take into account sudden changes of constructive and (or) 

computational models of structures and its elements. In addition, it should be noted that existing 

formulations of problem and computational methods are imperfect. It requires intensifying 

development of analytical and numerical methods, which allows solving constructively nonlinear 

problems for structures, the computational models with changes under load. Such methods would 

relate accidental impacts values with increments of internal forces in structures and kinematic factor of 

bearing capacity. Mathematic models of dynamic processes caused by instantaneous changes 

topology, cracking, local destruction, damage or destruction of supports are presented in the papers 

[7–11]. The mathematical models of studying objects in these papers are differential equations of 

different orders in combination with boundary and initial conditions. The common item for all these 

papers is using model analyzing algorithm, which based on the calculation static state as initial 
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conditions for dynamic process caused by sudden distortion of static state by accidental impact; 

analysis of forced movements applying modal expansion of initial state and load by the damaged 

structure modes. Analogous techniques are applied in analysis of rod systems on the elastic 

foundation. For example, in the papers [12–19] the evaluations of dynamic load increasing in the 

'beam - foundation' system are given for the case of damage of foundation. The article [14] deals with 

sudden transformation of boundary conditions and article [15] devoted evolutionary deformation of 

'beam - foundation' system. 

In the present paper, the mathematical model of dynamic process at sudden boundary condition 

transformation of clamped at the edges beam on the elastic foundation is given and analyzed. 

2.  Formulation of the problem 

It is supposed, that beam with length l clamped at the ends and loaded by evenly distributed load q as 

it is shown in figure 1 (a). Flexural rigidity is EI. Beam lays on the elastic foundation Winkler's type 

with rigidity k. At the time t = 0, beam on two supports instantaneous transforms to cantilever as it is 

shown in Figure1 (b). This transformation is caused by damage of right support. 

 

 

   (a)    (b) 

Figure 1. Computational models for static bending beam on two support without damages (a)  

and forced oscillations of damaged beam (b). 

 

Sudden appear of damage in the form of right support destruction lead beam to movement, since 

common rigidity decrease of structural 'beam-foundation' system do not provide equilibrium of forces. 

Determination of character and parameters of movement is shown below in the paper in the following 

sequence: 

1) formation of initial conditions by solving the static bending problem for beam on the elastic 

foundation with clamped ends without damages; 

2) solving problem of eigenvalues for damaged cantilever beam on the elastic foundation: natural 

frequencies determination and modes of oscillations; 

3) solving problem of forced oscillations for beam on the elastic foundation using modal 

expansion of load and static deflection by modes of natural oscillations, obtained before in p.2. 

Determination of internal forces. 

3.  Characteristics of initial static state 

General solution of static bending of beam on the elastic foundation Winkler type with clamped both 

ends by evenly distributed load in dimensionless form with using Krylov function and initial 

parameters was obtained in the paper [12, 13, 14] in the form: 

      4 0 2 0 14
1 ,

4
s

q
w K w K w K  


                                       (1) 

Where   

3 4
4, , , .

4
s

x ql kl
w q

l l EI EI


    

,    1 4iK i   – Krylov function 
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  4
1 2 1 3 2 4 3 4 13

sin cos
, , , , 4 .

4

ch sh
K K K K K K K K K

   
 




        

 

0 0(0), (0)s sw w w w     – initial parameters. 

Distribution of bending moments at static state is characterized by function: 

     2 0 4 0 3 .s qK w K w KМ                                       (2) 

In Figure 2, bending moment diagrams for beam on the elastic foundation with clamped edges at 

different values general rigidity of 'beam - foundation' system 
4

4 .  is presented. 

 

 

Figure 2. Bending moment diagrams for beams on the elastic foundation with clamped edges. 

 

4.  Natural bending oscillations of cantilever beam on the elastic foundation 

Natural bending oscillations of cantilever beam on the elastic foundation are described by 

equation [12]: 

4 2
4

4 2
4 0d

d
dw w

w
 

 
  

 

 
 
 
 

.                                               (3) 

In the equation (3) dimensionless variables ,dw   and parameter 0  is introduced 

 
0 0

,
, , .d

t k
w t

l A

 
  


  

 

Parameter 0  has dimension of frequency and called conditional frequency.  

Let us divide variables in the equation (3) using following substitution: 

 sin ,dw W                                                                (4) 

where 
0





  – comparative natural frequency of cantilever beam on the elastic foundation bending 

oscillations. 
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Formula of the mode of natural bending oscillation  W   is obtained by substitution of formula 

(4) to equation (3)
 

 
4

4 2

4
4 1 0

d W
W

d

 



   .                                                     (5) 

Using comparative frequency 
 

and ‘conditional’ frequency 0 , which can be written as 

0
0

1 1

; ,

fr fr

 
 

 
   where  

2

1

1, 875

fr

EI

Al 
   is fundamental frequency of bending oscillation of 

cantilever beam without elastic foundation, transform equation (5) to the form: 

 
4

4 2
04

2
(1,875) 0.

d W
W

d
 


  

                                              

(6) 

Applying Euler's substitution to the equation (6) 

,
r

W Ae


                                                                     (7) 

it is obtained characteristic equation: 

 4 4 2 2
0(1,875) 0,r                                                         (8) 

Roots, that can be presented in three variants in accordance to ratio of the frequencies 0  and  : 

1. If 0,   then roots of equation (8) are real and whole imaginary: 

2 24
1,2 1 3,4 1 1 0, , 1,875 .r r i         

                            
(9) 

2. If 0 ,   then roots of the equation (8) are complex: 

  2 24
1,2,3,4 2 2 0

1,875
1 , .

2
r i                                     (10) 

3. If 0 ,   then we obtain quadruple root: 

1,2,3,4 0.r   

It is shown in the papers [16], that two simply supported ends, free ends and cantilever in the case 

of canonical boundary conditions for beam entirely laying on the elastic foundation Winkler’s type, 

such as two clamped ends, the physically real result can be obtained only using (9): 

0.   

Deflection function in this case in accordance first two conditions (11) 

0 0 0

(1) (1) 0.

W W

W W

 

  
                                                                (11) 

Takes the form: 

     0 2 1 0 1 1 .W W R W R                                              (12) 
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In accordance with the second group of boundary conditions (11), we obtain system of algebraic 

equations with unknown initial parameters 0W   и 0W 

 
   

   

0 4 1 0 3 1

4
0 1 1 1 0 4 1

0

0.

W R W R

W R W R

 

  

  

  





                                                (13) 

 

Where  1 4iR i    are Krylov functions, which have the from 

  41 1
1 1 2 1 3 2 4 3 4 1 13

1

sin
; ; ; ; .

2

sh
R R R R R R R R R

   
  




         

Equaling determinant of the equation system (13) to zero and uncover it, we obtain frequencies 

equation 

1 11 cos 0,ch                                                             (14) 

which is analogous by the form with the equation of natural oscillations of cantilever beam. Roots of 

this equation give the row: 

11 12 1

2 1
1,875, 4,694, .

2
n

n
   


    

Frequencies of natural bending oscillation of cantilever beam on the elastic foundation can be 

found using formula (9): 

4
21
0 .

1,875

n
n


  

 
 
 

                                               (15) 

Each frequency  ̃  corresponds mode of oscillations  nW   

 
 

 
 4 1

0 2 1 1 1
3 1

.
n

n n n
n

R
W W R R

R


   


 
 
 
 

                                  (16) 

In this way, the modes of beam natural oscillations on the elastic foundation remain such as modes 

of beam without elastic foundation, and frequencies depend on the parameter 0  becoming in 

4
21
0

1,875

n


 
 
 

 times higher by value, then corresponding frequencies of cantilever beam without 

elastic foundation. 

5.  Forced oscillation of cantilever beam on the elastic foundation 

Solution of forced oscillation equation of cantilever beam laying on the elastic foundation 

4 2
4

4 2
4d d

d

w w
w q

 

 
  

 

 
 
 
 

                                         (17) 
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can be obtained using expansion of the function  ,dw    to the row by eigenfunctions  nW  (16) 

with coefficients in the form of time function  nQ 
 

   
1

.d n n

n

w Q W 




                                                  (18) 

Let us derive differential equation to determine functions  nQ 
,
 substituting row (18) and 

relation for 

4

4

d W

d
 from (6) to equation (17) and multiplying both parts of obtained equations to 

  ,nW   integrating both part by  from 0 to 1 and applying orthogonality property of the natural 

oscillations modes  nW   

2
2

2
,n

n n n

d Q
Q R

d



                                                     (19) 

where  

 

 

1

0

4 2 1
0 2

0

.
(1,875)

n

n

n

W d

q
R

W d

 


 

 




 

General solution of non-homogenous equations (19) has the form: 

          ̅          ̅      ̅ 
 ⁄                                      (20) 

where 1nD   2nD  are constants of integrating, which can be obtained from initial conditions of 

dynamic process 

   

,0

, 0

0.

d s

d

w w

w



 










                                               (21) 

Using second condition of formula (21), which means that velocity of beam points equals to zero at 

0,   we obtain 

2 0.nD                                                          (22) 

Using first condition of formula (21), we obtain  

   1 2
1

,n
n n s

n n

R
D W w 







 
 
 
 
 

                                       (23) 

where by multiplying both part of formula (23) to  nW   and integrating by  from 0 to 1 we obtain 

1 2
,n

n n

n

R
D B


                                                        (24) 
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where 

   

 

1

0

1
2

0

.

s

n

n

w W d

B

W d

  

 






 

Substituting (22) and (24) to row 

   ∑(       ̅          ̅      ̅ 
 ⁄ )  ( )

 

   

  

We obtain deflection function of beam-forced oscillations  

   2

1

, cos sin ,
2

n
d n n n n

n

w B C W


     




 
 
 
 

                                    (25) 

where 

 

 

1

0

4 2 1
2

0

2
.

(1,875)

n

n

n
n

W d

q
C

W d

 


 

 



  

Differentiating (25) by  two time, we obtain bending moments function  ,dM  
 

   2

1

, cos sin .
2

n
d n n n n

n

M B C W


     




 
 
 
 

                             (26) 

6.  Numerical results 

Dimensionless deflections  ,w    and bending moments  ,M    of beam laying on the elastic 

foundation Winkler type and loaded evenly distributed load 1q  are calculated at various 

combination of general rigidity of 'beam - foundation' system 4 .   Deflection  and moments are 

calculated for initial state at clamped ends of beam   ,sw   sM  , for quasi static transformation of 

clamping to free end  qsw   and  ;qsM   for instantaneous transformation to cantilever rod 

 ,dw    and  , .dM    

Computational results are shown in Figure 3 and 4, as well as in Table 1 Distribution of deflections 

 qsw   and bending moments  qsM   along beam after quasi static appear of damage at various 

values of general rigidity parameter of ‘beam-foundation’ system         ⁄  are shown in Figure 3. 

In Figure 2, the graphs of bending moment increasing in clamped edge  0,dM   at the beginning 

of dynamic process after sudden beam transformation to cantilever 0 1    as it is shown in 

Figure 4 (a) and graphs of stationary oscillations at 1   as it is shown in Figure 4 (b). 
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Figure 3. Distribution of deflection and bending moments along the beam length at various values 

general rigidity   of “beam-foundation” system. 
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(a)                                                                   (b) 

Figure 4. Bending moment diagrams at the beginning of dynamic process after sudden 

transformation (a) and for stationary oscillations (b). 

 

Table 1. Maximum values of bending moments at initial state and at oscillations,  

caused by damage of beam. 

  sM  qsM  dM  qsК  dK  

0 0.08 0.5 4.7 6.25 9.4 

10
2
 0.07 0.095 0.5 1.36 5.26 

10
3
 0.031 0.031 0.055 1 1.77 

10
4
 0.01 0.01 0.01 1 1 

7.  Conclusions 

The calculation results shows, that instantaneous transformation of clamped on the both sides beam, 

which lays on the elastic foundation, to cantilever rod have significantly influence to stress-strain state 

of beam at low values general rigidity of ‘beam – foundation’ system ( 3)  . It is obvious, that 

bending moment diagram changes however, it does not depend on speed of damages appearing. 

At high values of general rigidity parameter ( 3)   changing of boundary condition lead to new 

distribution of deflection and bending moments with saving location 0   and value of maximum 

bending moment regardless of this process speed. 
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