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Abstract. Earlier, the criterion of minimum material consumption was formulated within the 

design of the I-shaped bar width outline and the stability constraints or restriction to the value 

of the first natural frequency in one principal plane of the cross-section inertia. In the 

distinctive paper, we formulate a criterion for the minimum material capacity of the I-shaped 

bar with a variation in its thickness and outline of the width, with restrictions on the critical 

force value or restriction to the value of the first natural frequency in two principal planes of 

the section inertia. Numerical examples are presented. 

Let us consider I-shaped bar with web height 28.01 b  m and web thickness 006.0stb  m. The 

boundary conditions in the plane yx 0  are shown in Figure 1 (top). The boundary conditions in 

the plane zx 0  are shown in Figure 1 (bottom). 

 

  

Figure 1. Considering boundary conditions. 

 

The longitudinal force 300P  kN acts on the rod. There are no external masses. Self-induced 

vibrations are caused by the mass of the rod. Specific mass of the bar material is equal to  

7850  kg/m
3
. Modulus of elasticity is equal to 206000E  MPa. The bar can be subjected to 
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vibrations with a frequency of 150   sec
-1

. The solution is realized on the basis of a discrete model 

which includes 30 sections. 

Width of the flange ( ][2 ib ) and the thickness of the flange ( p ) are varied. The web height ( 1b ) 

and web thickness ( st ) are not varied. The values of the first critical force and the natural frequency 

in the two principal planes of inertia are limited. The effect of the longitudinal force on the natural 

frequency value and the possibility’s influence of a given frequency vibrations on the magnitude of the 

critical force are taken into account. Target function for discrete model has the form: 





n

i

pibV
1

20 ][2  ,                                                            (1) 

where n  is the number of sections in discrete model. 

Stability constraints have the form: 

]1[2   ];1[1 PPPP  ,                                                         (2) 

where ]1[1P , ]1[2P  are the first critical forces in the planes yx  0  and zx  0  respectively. 

Restrictions to the value of the first natural frequency have the form 

]1[2]1[10   ,                                                             (3) 

where ]1[1 , ]1[2  are the lowest natural frequencies in the planes yx  0  and zx  0  

respectively. 

Criterion for the minimum material capacity of the I-shaped bar with a variation in its thickness and 

the width outline, with restrictions on the value of the critical force or restriction to the value of the 

first natural frequency in two principal planes of the section’s inertia has the form: 
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In order to find the value of the minimum material requirement, we consider the problem without 

using constructive constraints. The solution is implemented by random search. The results are shown 

in Table 1 and Table 2. 

The optimum value for the selected thickness of the flange 000764.0po  m is given, and the 

width ][2 ib  of the third column is given above the second and third columns. The second column 

shows the reduced stress values ][1 i . In all sections except the second and third, the value ][1 i  is 

close to unity, which confirms the minimum material consumption of the I-beam flange volume. In 

sections 2 and 3 the width of the flange is practically equal to the web thickness; it is practically 

merged with it. In the penultimate row below columns 2 and 3, the value of the flange material volume 

is given, 01597.0ft  m
3. The solution obtained is unacceptable, since the dimensions of the flange 

are close to degeneracy, but the obtained solution gives the value of the minimum material-intensive 

volume of the flange when the critical force value is limited, taking into account the influence of 

possible vibration effects. This result will allow us to evaluate the closeness of constructively 

acceptable solutions to the minimum material-intensive solution. 

Let us consider optimization examples of the values p  and ][2 ib  for the target function (1), 

constraints (2), (3) and additionally with constructive constraints on the values of the variable 

parameters. Introduction in the optimization of design constraints approximates the optimal solution to 

the practically acceptable [1,2]. 

Seven options for selecting constraints are considered. Out of these three, the flange thickness is 

limited, in other three flange widths, and in one the thickness and width of the flange are limited. The 

results of the decisions are given in Table 1 and Table 2. 

The result of optimization in the process of the flange thickness limiting 006.0po  m is shown 

in column 4 of Table 1.  
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Table 1. Results of the analysis (without using constructive constraints; with constraints for po ). 

No. Without using constructive constraints With constraints for po   

000764.0po  006.0po  008.0po  01.0po  

006.0po  008.0po  01.0po  

][1 i  ][2 ib  ][2 ib  ][2 ib  ][2 ib  

1 0.999 0.092 0.097 0.116 0.125 

2 0.710 0.061 0.093 0.114 0.123 

3 0.617 0.075 0.080 0.107 0.117 

4 0.934 0.089 0.050 0.095 0.105 

5 0.987 0.145 0.065 0.075 0.093 

6 0.994 0.240 0.096 0.044 0.072 

7 1 0.350 0.117 0.070 0.039 

8 0.996 0.467 0.128 0.097 0.072 

9 0.994 0.583 0.136 0.111 0.093 

10 0.997 0.692 0.142 0.123 0.108 

11 0.996 0.804 0.143 0.130 0.117 

12 0.995 0.914 0.147 0.133 0.125 

13 0.991 1.023 0.143 0.135 0.128 

14 0.994 1.122 0.140 0.134 0.131 

15 0.998 1.215 0.139 0.129 0.130 

16 0.992 1.317 0.139 0.124 0.130 

17 0.993 1.404 0.141 0.117 0.120 

18 0.997 1.484 0.157 0.108 0.113 

19 0.996 1.566 0.172 0.108 0.102 

20 0.996 1.642 0.186 0.119 0.091 

21 0.997 1.712 0.196 0.136 0.082 

22 0.996 1.781 0.211 0.149 0.095 

23 0.994 1.845 0.220 0.164 0.114 

24 0.997 1.895 0.230 0.171 0.130 

25 0.997 1.949 0.241 0.183 0.141 

26 0.995 2.002 0.252 0.192 0.153 

27 0.998 2.036 0.261 0.195 0.156 

28 0.996 2.083 0.265 0.201 0.162 

29 0.998 2.111 0.269 0.208 0.169 

30 0.997 2.144 0.269 0.213 0.174 

ft  0.01597 0.01773 0.01919 0.02107 

eft % 0% 10.88% 20.01% 31.93% 

 

 

 



APCSCE

IOP Conf. Series: Materials Science and Engineering 456 (2018) 012006

IOP Publishing

doi:10.1088/1757-899X/456/1/012006

4

 

 

 

 

 

 

Table 2. Results of the analysis (with constraints for ][2 ib ). 

No. With constraints for ][2 ib  14.0][2 ib  

18.0][2 ib  16.0][2 ib  14.0][2 ib  01.0po  

0.0071po  0.0079po  0.0091po  01.0po  

][2 ib  ][2 ib  ][2 ib  ][2 ib  

1 0.106 0.108 0.118 0.126 

2 0.098 0.102 0.113 0.124 

3 0.091 0.097 0.114 0.118 

4 0.076 0.084 0.099 0.106 

5 0.075 0.076 0.089 0.094 

6 0.078 0.079 0.093 0.072 

7 0.105 0.092 0.102 0.046 

8 0.117 0.113 0.097 0.073 

9 0.134 0.122 0.127 0.098 

10 0.147 0.140 0.129 0.109 

11 0.151 0.145 0.140 0.126 

12 0.151 0.151 0.140 0.129 

13 0.159 0.158 0.140 0.136 

14 0.157 0.160 0.140 0.138 

15 0.171 0.160 0.140 0.139 

16 0.171 0.160 0.140 0.138 

17 0.175 0.160 0.140 0.138 

18 0.177 0.160 0.140 0.132 

19 0.180 0.160 0.140 0.125 

20 0.180 0.160 0.140 0.117 

21 0.180 0.160 0.140 0.106 

22 0.180 0.160 0.140 0.112 

23 0.180 0.160 0.140 0.105 

24 0.180 0.160 0.140 0.119 

25 0.180 0.160 0.140 0.134 

26 0.180 0.160 0.140 0.140 

27 0.180 0.160 0.140 0.140 

28 0.180 0.160 0.140 0.140 

29 0.180 0.160 0.140 0.140 

30 0.180 0.160 0.140 0.140 

ft  0.01910 0.01982 0.02124 0.02137 

eft % 19.61% 24.11% 32.99% 33.81% 
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The volume of the flange is equal to 01773.0ft  m
3
, which is 10.88% more than the minimum 

material-intensive volume. 

The optimization result in the process of the flange thickness limiting 008.0po  m is shown in 

column 5 of Table 1. The volume of the flange is equal to 01919.0ft  m
3
, which is 20.01% more 

than the minimum material-consuming. 

The result of optimization when limiting the thickness of the flange 01.0po  m is shown in 

column 6 of Table 1. The volume of the flange is equal to 02107.0ft  m
3
, which is 31.93% more 

than the minimum material-consuming. 

The optimization result in the process of the flange width limiting 18.0][2 ib  m is shown in 

column 2 of Table 2. The volume of the flange is equal to 01910.0ft  m
3
, which is 19.61% more 

than the minimum material-consuming. 

The optimization result in the process of the flange width limiting 16.0][2 ib  m is shown in 

column 3 of Table 2. The volume of the flange is equal to 01982.0ft  m
3
, which is 24.11% more 

than the minimum material-consuming. 

The optimization result in the process of the flange width limiting 14.0][2 ib  m is shown in 

column 4 of Table 2. The volume of the flange is equal to 02124.0ft  m
3
, which is 32.99% more 

than the minimum material-consuming. 

The optimization result in the process of the flange thickness limiting 01.0po  m and the width 

of the flange 14.0][2 ib  m is shown in column 5 of Table 2. The volume of the flange is equal to 

02137.0ft  m
3
, which is 33.81% more than the minimum material-consuming. 

Let's consider one more optimization variant of the flange with the target function (1), constraints 

(2), (3) and structural constraints for the thickness of the flange, its width, but under the condition of 

constant width along the length of the bar. We take the following constraints: 

01.0po  m,   14.0][ 22  bib  m. 

As a result of optimization, we get 

0104.0po  m,   126.0][ 22  bib  m. 

The flange volume is 02360.0ft  m
3
, which differs from the minimum material-intensive by 

47.78%. The difference in the material consumption is much smaller according to the optimization 

solutions, where the width of the flange varies along the length of the bar. So the difference with the 

solution for a variable along the length of the flange’s bar width and under constraints  

( 01.0po  m and 14.0][2 ib  m) is 10.44%. 

Uniform stability in both principal inertia planes is achieved in all optimization solutions (both with 

constructive constraints and without them). Thus, a set of optimization solutions can serve as a 

guideline in the process of the constraints’ system choosing that meet the specific design conditions. In 

this case, it becomes possible to compare the optimized versions for the material consumption both 

among themselves and on the basis of proposed criterion with a material-intensive minimum [1,2]. 

The criterion presented in this paper, as well as those obtained earlier (presented, for instance,      

in [3-6]), can also be used for problems’ solution of structures’ optimal reinforcement and generally 

for solution of structural analyses’ corresponding problems [7-12]. 
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