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Abstract. The scientific and methodological approach to the formation and implementation of 

optimal plans of technical (metrological) verification of standards and measuring instruments 

used to equip the technical systems in the field of construction, housing and communal services 

was developed. The approach consist of three component items: the mathematical model of 

metrological verification of measuring instruments during operation, the algorithm for 

constructing optimal verification plans, the method for constructing the sequence of 

verifications of measuring instruments. The results of mathematical simulation are presented.  

1.  Introduction 

The problem of mathematical simulation of planning verifications of measuring instruments (MI) is an 

actual practical task in many activities including the spheres of housing services and communal 

services and construction too [1, 2].  

Ensuring the correctness of the transfer of the size of physical quantities units in all parts of the 

metrological chain is carried out by means of verification schemes: normative documents establishing 

the subordination of measuring instruments participating in the transfer of the unit size from state 

standards to working standards (WS) and complexes of measuring instruments (CMI) and MI, 

indicating methods and error [3, 4]. 

The transmission of physical quantity unit from standard to other MI means bringing the size of 

stored in standard to the size of the unit of quantity reproduced by the WS and MI. This procedure is 

carried out during the verification of  MI [3, 4]. 

A wide variety of methods are used for constructing plans of technical (metrological) verification 

of MI and CMI. The basic method for constructing optimal or rational plans is the method of 

mathematical programming, including the method of integer mathematical programming, linear 

programming problem (LPP), integer linear programming problem (ILPP) [5, 6]. 

2.  Verification scheme 

The verification scheme [3, 4] can be represented as a pyramid (Figure 1). At the base of pyramid is 

the whole set of MI of the physical quantity, the top of the pyramid is the original standard (state 

standard), and on the intermediate "floors" are  WS and primary and secondary measuring standards  

of various categories in accordance with their accuracy. Various aspects of the use of measuring 

equipment and methods used to improve the accuracy of measurements are considered in [3, 4]. The 



APCSCE

IOP Conf. Series: Materials Science and Engineering 456 (2018) 012019

IOP Publishing

doi:10.1088/1757-899X/456/1/012019

2

 

 

 

 

 

 

article proposes a scientific and methodological approach to the construction and implementation of 

optimal plans [5] for the verification of MI by means of WS and secondary MI located in the pyramid 

between original standard and MI. 

 

Figure 1. Verification scheme. 

3.  Formulation of the problem of optimal use of working standards for verifications of 

measuring instruments 

Let consider 
 
 units of WS used to transmit  different value units. The characteristic vector for 

WS with number r ,  ( Rr ,...,2,1 ) of dimension M has the form: 
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The coordinates of the characteristic vector can be equal zero or one.  

Let some set of MI described by means of a set of characteristic vectors be given. We will combine 

all MI in J CMI (for example, on a territorial principle). If we summarize up all the characteristic 

vectors included in the CMI, then we obtain the characteristic verification vector for this CMI: 
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This vector with integer value nonnegative coordinates shows what physical quantities and in what 

quantity should be transferred in the process of servicing this CMI.  

The characteristic matrix of verification has the form:  
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It is assumed that during transmission by the WS with the number r of unit of measure with number

j  there used certain amount of resource.  In this paper, the duration of verification is considered as 

resource rjt . Thus the resource unit cost matrix has the form: 

R M

Jj ,...,2,1
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Let us introduce the unknown variables: - the number of units of physical quantities with the 

sequence number j  
transmitted by the WS with number r . Then the required service matrix has the 

form of:  
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It is required to distribute WS between CMI (or CMI between WS) so that the quality criterion 

takes the lowest value 

min),(
1




rj

J

j

rjtxTXL ,                                                         (1) 

subject to the guaranteed carrying out all necessary verifications of  MI: 

                                        **
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,   Mm ,...,2,1 ,   Jj ,...,2,1 .                                         (2) 

After solving (1),(2) and computing the matrix X ,  the technological matrix TEX is constructed by 

means of the element-wise multiplication of the matrix T  and X : XTTEX  .  The technological 

matrix shows the amount of resources which was spent on each operation (verification by means of 

WS with number r  the MI with number j  in the amount of rjx  times). 

Next, we calculate the estimate of the total resource spent by WS with every number r  (the sum of 

elements of r  - row of the matrix). Note that if you select maintenance time as a resource, during this 

time WS is already engaged in maintenance, and it could not be used to transfer units to other CMI. 

And next, we calculate the resource for each WS, which was spent on the verification of the j  

CMI (the sum of j  elements of the relevant matrix column). 

It should be noted that in wide variety of practical problems, the constraints (2) can be represented 

as a simplex form with unit coefficients for unknown. In this case, the optimum solution of the 

corresponding ILPP will be integer value vector. In this case it possible to use the standard simplex 

method for solving ILPP, which has significantly less labor input than the general methods for solving  

ILPP. 

Note also that the problem of constructing a sequence of use WS for MI verification is NP - 

complete (difficult to solve) problem [5-7]. To solve this problem, there are currently sufficiently 

effective approximate methods and software. 

4.  The results of mathematical simulation 

The real park of MI which used in housing and communal services includes hundreds of thousands of 

MI samples, several dozen of CMI and tens of thousands of WS.  In common case the LPP of such big 

size dimension and the corresponding problems of construction of sequences of carrying out checks 

can be solved by means of [6, 7]. 

It should be noted that for a real park, a significant part of each type of MI can be verified by one 

single standard. A significantly smaller portion of the MI samples can be verified by several different 

WS. Therefore, when we simulate planning of verifying, the optimization is applied only to the part of 

the park of MI for which there is a possibility to verify by means of several WS. 

rjx
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The Figure 2 represents four different types of MI (different types of measured values), a diagram 

showing the proportions between the number of MI samples that could be verified  by only one WS 

value (left column) and the number of MI samples could be verified by several WS values (right 

column). Note that the main part of the MI can be verified by only one WS. Therefore, optimization is 

possible only for a smaller part of park of MI. 

 

Figure 2. Proportions of the number of MI samples that could be verified by only one WS and the 

number of MI that could be verified by several different WS. 

To understand regularities and peculiarities of solving such a large dimension problem, the article 

presents the results of solving a simple model problem: 4R , 4M , 3J .  The characteristic 

vectors for WS and the matrix of unit costs are given: 

,  ,  ,  ,   .

 
The characteristic vectors of verifiable quantities, for MI, entering the first and second CMI: 

, ,  ,  ,  ,  ,   , 

and the characteristic vectors for MI entering the third CMI: 
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Then the vectors of verification values for the three variables CMI: 
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Then matrix S  and matrix STZ   - costs of resources (time) on verification are:  
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Let us introduce the unknown variables: rjx - the amount of physical quantities with a sequence 

number j transmitted by WS with sequence number r . Then the matrix of service will have a 

dimension of 4 x 3. 

The solution of the problem about optimal use of WS for verification of MI consists of three stages: 

1. The solution of the problem of the minimum total time of all CMI verification is sought, 

provided that WS can serve only one CMI at a time (simultaneous maintenance of several CMI is 

impossible). 

2. The estimate for the service time of all MI is constructed from below. 

3. The sequence of verification for each WS is sought. The service time of three CMI in a total is 

calculated (the minimum possible time during which at least one CMI is in service). 

It is necessary to find the minimum total service time of all CMI: 

 32223121111 22366 xxxxxL min84239 4333231342  xxxxx  , 

and at the same time to provide guarantee verification of three CMI: 
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Since the LPP matrix has a block structure, then, using the decomposition principle, we will solve 

three independent problems about the minimum of the verification time for each CMI.  

Let's formulate each of these three LPP. 

It is required to organize the verification of all MI so that the verification time of the 1-st CMI was 

minimal:    

0,1,2,3min,366 41213121114131113121111  xxxxxxxxxxxL  . 

It is required to organize the verification of all MI so that the verification time of the 2-nd CMI was 

minimal: 

3,1,1,0min,922 42223222124232124232222  xxxxxxxxxxxL  . 

It is required to organize the verification of all MI so that the verification time of the 3-d CMI was 

minimal: 

2,4,1,3min,8423 4323332313433313433323133  xxxxxxxxxxxxL  . 

The analysis showed that since the third coordinate for the WS characteristic vectors is equal to one 

only for the third WS so the transfer of the size of the third physical value is possible only with the use 

of the third WS. Thus the third WS will be used for transferring sizes for the first and second CMI just 

once, and for the third CMI – exactly for 4 times. So we require 131 x , 132 x , 433 x  and the 

third inequality in all three of LPP we will not consider. As a result of the solution of the formulated 

ILPP taking into account the conditions noted above we will receive a matrix of solution and 

technological matrix: 
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Thus, the service time of each CMI are:   151 L , 222 L ,   263 L   respectively. At the same 

time operating time of each WS are: 01 P , 162 P , 213 P , 264 P .  It should be noted that the 

first WS is not used at all, and a third WS is advisable to use only for the maintenance of the second 

CMI and the third CMI.  

Lower bound for total service time of all CMI: 26},,max{ 321  LLLL .  
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It should be noted that the sequence of operation for each WS can be constructed in several 

different ways. As a rule, the problem has an infinite number of solutions. One of the variants of the 

sequence is shown in Figure 3.  

 

 

Figure 3. The results of construction of the sequence of use of working standards verification CMI. 

 

It should be noted that the total time spent by a technical system on the metrological service is 

equal to 26. In the example considered it is the same time as the estimate from below
L .   Note that in 

solving practical problems for real park of MI and WS, the total time which spent on the system 

maintenance can significantly exceed the value 
L  [6, 7]. 

5.  Conclusion 

The main results of the work are as follows: 

1. A scientific and methodological approach to the optimization of the process of verification of 

measuring instruments by means of using working standards, based on the decision of the linear 

programming problem series was developed. The results of decision of linear programming problem 

allows developing the optimal plans for verification and to build sequences of verifications, that 

implementing optimal plans. 

2. It is established that if the system of restrictions of linear programming problem can be 

represented as a simplex a form with unit coefficients at unknowns, then the solution of the 

corresponding linear programming problem will also be integer. When these conditions are met, it is 

possible to use the standard simplex method for solving integer linear programming problem, which is 

significantly less laborious than the general methods for solving integer linear programming problem. 

3. The method developed has already shown its effectiveness in the tasks of constructing optimal 

verification plans in the field of metrology of special equipment used to improve the defense capacity, 

as well as for special equipment used in emergency situations. 

4. The results of research and solution of the model problem presented in this article allow us to 

understand the basic laws, meaning and structure of optimal plans.  
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