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Abstract. The force driven dynamic response of a nonlinear plate embedded in a viscoelastic 

medium, damping features described by the Kelvin-Voigt fractional derivative model, is 

studied in the present paper. The motion of the plate is described by three coupled nonlinear 

differential equations with due account for the fact that the plate is being under the conditions 

of the internal combinational resonance accompanied by the external resonance, resulting in 

three modes corresponding interaction to the mutually orthogonal displacements. The 

displacement functions are determined in terms of linear vibrations’ eigenfunctions. The 

solution of motion nonlinear governing equations was obtained by the utilization of the 

multiple scales method, so doing the amplitude functions are expanded into power series in 

terms of the small parameter and depend on different time scales. The influence of viscosity on 

the energy exchange mechanism between interacting modes was analyzed. A comparative 

analysis of numerical calculations for the free and forced vibrations cases was carried out.  

1.  Introduction 

During the intense development of the modern industry, a reduction in the materials consumption of 

machine structures and various infrastructure objects is one of the main problems in the civil 

engineering. For the purpose of material saving, the need arises to manufacture thin-walled structures. 

The thinner is the element and the more flexible it is, the stronger its susceptibility to buckling, 

resulting in the loss of stability and/or the destruction of the structure in general. 

The plates are widely used in engineering structures such as constructive elements in different 

mechanical, civil, and aerospace systems. Vibrations of viscoelastic plates are considered in the 

literature [1, 2]. The Kelvin-Voigt viscoelastic model was used in [3, 4] for modelling free nonlinear 

vibrations of sandwich rectangular plates with simply-supported moveable edges. Such plates are 

often subjected to nonstationary and harmonic mechanical loads. The resonant harmonic vibrations, 

occurring when the frequency of the harmonic time-dependent force becomes equal to the natural 

frequency of the plate, it is very dangerous. This raises the problem of damping the stationary and 

nonstationary vibrations of thin rectangular plates. For this purpose, widespread use is made of the 

passive-damping technique where elements with high hysteresis losses are incorporated into structures 

to be damped [3, 4].  

Moreover, nonlinear vibrations could be accompanied by such a phenomenon as the internal 

resonance, resulting in multimode response with a strong interaction of the modes involved [5]. In the 
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majority of the research papers, the internal resonance has been investigated within some natural 

frequencies combination of one and the same type of vibrations [6-8].  

Another type of the internal resonance was studied in [9], when one frequency of the in-plane 

vibrations was twice as large as (a 1:2 internal resonance) some frequency of the out-of-plane 

vibrations, the damping features of the surrounding medium were modeled via the Riemann-Liouville 

fractional derivative. Nonlinear free damped vibrations of a rectangular plate described by three 

nonlinear ordinary differential equations have been analyzed in [10], where in the procedure resulting 

in decoupling, linear parts of equations has been proposed with the further utilization of the multiple 

scales method for solving nonlinear governing equations of motion, the amplitude functions are 

expanded into power series in terms of the small parameter and depend on different time scales. All 

possible types of the internal resonance were revealed in [10], and it was shown that the type of the 

resonance depends on the smallness order of the fractional derivative entering in the equations of the 

plate motion. Further this approach has been extended to the analysis of the force driven vibrations 

with weak fractional damping of a nonlinear oscillator [11] and suspension bridge [12]. 

In the present paper, the procedures proposed in [10-12] were generalized for the force driven 

vibrations analysis of a thin plate under the additive combinational resonance when the force 

frequency is approximately equal to a certain natural frequency of vertical vibrations.    

2.  Problem formulation 

Let us consider the dynamic behavior of a free supported nonlinear thin rectangular plate, which 

vibrations in a viscoelastic fractional derivative medium are described by the following three 

differential equations in the dimensionless form (free damped equations presented in [10] are 

supplemented herein by the vertical harmonic force F applied at the point with the coordinates 
0 0,x y ):
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where  , ,u u x y t ,  , ,v v x y t , and  , ,w w x y t  are the displacements of points located in the 

plate's middle surface in the x − , y − , and z − directions, respectively,   is Poisson's ratio, 
1 /a b   

and 
2 /h a   are the parameters defining the dimensions of the plate, a and b are the plate's 

dimensions along the x − and y − axes, respectively, h is the thickness, t is the time, an overdot denotes 

the time-derivative, lower indices label the derivatives with respect to the corresponding coordinates, 

 0 0
ˆ ( ) ( )cos FF F x x y y t      is the harmonic force, F̂  is its amplitude, 

F  is the frequency,    

  is the Dirac delta function, æ =i i i

  1,2,3i   are damping coefficients,   is a small 

dimensionless parameter of the same order of magnitude as the amplitudes, i  are finite values, 
i  is 

the relaxation time of the ith generalized displacement, and 0D

  is the Riemann-Liouville fractional 

derivative of the  -order [13].  

For solving nonlinear governing equations of motion (1) − (3), the procedure resulting in 

decoupling linear parts of equations was proposed with the further utilization of the multiple scales 
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method [10], in so doing the amplitude functions are expanded into power series in terms of the small 

parameter and depend on different time scales. It is shown that the phenomenon of internal resonance 

could be very critical, since in the thin plate under consideration the internal resonance is always 

present. Moreover, its type depends on the smallness order of the viscosity involved into 

consideration. The following types of the internal resonance have been revealed:  

order of  : 

the two-to-one internal resonance 

    1 3 2 1 2 3 2 3 1 2 1 32 , 2 , 2 , 2 ;                                         (4) 

the one-to-one-to-two internal resonance 

  1 2 32 1:1: 2                                                            (5) 

order of 2 :  

the one-to-one internal resonance 

     1 2 3 1 3 2 1 3 2 1 2 3 2 3 1 2 1 3, , , , , ;                          (6) 

the one-to-one-to-one internal resonance 

       1 2 3 1:1:1                  (7) 

the combinational resonance of the additive-difference type 

   
1 2 3 1 3 2 1 2 32 , 2 , 2 ,                                (8) 

where  
1  and 

2  are the  certain modes frequencies of in-plane vibrations in the x-and y-axes, 

respectively, and 
3  is the frequency of a certain mode of vertical vibrations. 

Now let us consider the case of the additive internal resonance (8) accompanied by the external 

resonance, when 
1 2 32 2 F      , 

F  is external force frequency. Using the set of solvability 

equations to eliminate secular terms similarly to the case of free vibrations [10] and adding the 

external resonance, we obtain the following solvability equations for the case of force driven 

vibrations: 
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where 
2 2/D T    is the time-derivative due to the utilization of the multiple time scales method 

[5, 10],  2jA T  1,2,3j   are unknown complex functions, 
1 ,

2 ,
13 ,

23  are coefficients 

depending on the plate dimensions and numbers of excited modes [10],  1,2,...8pk p   are 

coefficients depending on the natural frequencies of plate,  
1

2 2

32F Fk f 


  , and f  is a finite 

value. 

Representing the functions 1 2( , )iA T T in equations (9) in the polar form  

 1 2 1 2 1 2( , ) ( , )exp ,i i iA T T a T T i T T    ( 1,2,3)i   and separating real and imaginary parts yield 
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where a dot denotes differentiation with respect to 
2T , ,i ia   are amplitudes and phases, respectively, 

3 2 1= 2      is the phase difference, 
1= sin ,i i i is    

 
1= cos ,i i i i

    
 and = / 2  .  

3.  Numerical calculations 

The influence of the external force on the amplitudes of vibrations
2( )ia T calculated using the Runge-

Kutta fourth-order method according to equations (10) at different magnitudes of the fractional 

parameter   is traced in Figures 1-3, and hence its impact on the energy exchange between three 

interacting modes coupled by the additive combinational resonance (
1 2 32 37.43946     ).  

Figures 1 and 2 reveal the damping of the energy exchange between three subsystems, but Figure 2 

shows how much force can affect the energy exchange subjected to the initial conditions. From 

Figure 3 it is seen the viscosity influence on vibrations amplitudes at different levels of exciting force 

amplitude.  

 

 

Figure 1. Free vibrations (a); forced vibrations (b), when 
0 0.5ia   are initial amplitudes, 0.27  ,

ˆ 0.15f  ,
1 1.77   and 

2 0.119  : solid line –  3 2a T ; dotted line–  2 2a T ; dashed line –  1 2a T . 

(a) (b) 
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Figure 2. Free vibrations (a); forced vibrations (b), when 10 20 300.352; 0.594; 0.216;a a a  

1 165.25 
, 2 182.61  

, 13 165.26 
, 23 165.85  

,
0.3 

, 10 ;
2


   20 ;

2


  20 ;

2


  

ˆ 0.4f  , 
1 4  , and 

2 0.176  . 

4.  Conclusion 

This paper describes the nonlinear force driven vibrations of thin plates in a viscoelastic medium, 

when the motion of the plate is described by a set of three coupled nonlinear differential equations 

subjected to the condition of the combinational resonance accompanied by the external resonance, 

resulting in the interaction of three modes corresponding to the mutually orthogonal displacements. 

Nonlinear sets of resolving equations in terms of amplitudes and phase differences were obtained. The 

influence of viscosity on the energy exchange mechanism was analyzed. 

 

 

Figure 3. Forced vibrations at (a) æ = 0.15i
and (b) at æ = 0.25i

: solid line – 0  ; dashed  – 0.25  . 
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