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Abstract. The solution of the filtration problem allows calculating the injection of the grout 

into a loose ground to create a solid foundation. The basic deep bed filtration model of a 

monodisperse suspension in a porous medium is considered. Based on the synthesis of the 

standard asymptotic solution for a short time and the asymptotics of the filtration problem for a 

long time, a uniform asymptotic solution is constructed. A numerical calculation shows that the 

asymptotics is close to the solution for any time. 

1.  Introduction 

Before the construction of buildings and structures on loose grounds, it is necessary to create a 

reliable, solid foundation. Loose soils are a porous medium where a grout solution is pumped. The 

liquid solution fills the voids of the soil and strengthens it. Such methods are also used in the 

construction of underground storage facilities for toxic and radioactive wastes [1]. 

Filtration problems describe the transport and deposition of suspensions solid particles and colloids 

in a porous medium. The deposit formation depends on the chemical composition of the solid 

particles, fluid carrier and the frame of the porous medium. There are various filtration models that 

take into account the electrostatic and gravitational forces, diffusion and viscosity of the fluid [2–4]. If 

the particle and pore size distributions overlap, the deposit formation is determined by the size-

exclusion mechanism of particle capture: solid suspended particles pass freely through pores larger 

than the particle diameter and get stuck in the throat of pores smaller than the particle size. It is 

assumed that one particle completely blocks one pore, and each pore can retain only one particle. The 

retained particle cannot be knocked out of the pore by other particles or a fluid flow, and permanently 

blocks the pore [5]. 

For some mathematical filtration models, exact solutions are obtained [6–8]. If the model is too 

complex and an exact solution is unknown, an asymptotics is constructed [9–12]. As a rule, asymptotic 

solutions are applicable only in a limited domain and do not determine the filtration process 

simultaneously at the initial moment and for a large time. 

A uniform asymptotics of the one-dimensional filtration problem is constructed and shown in this 

paper. For a small blocking filtration coefficient, a standard asymptotics with respect to a small 

parameter is constructed, applicable for a limited time. For a large time, the asymptotic solution was 
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obtained in [13] in the form of decreasing exponents series. Asymptotics uniform in time is 

constructed by re-expansion of the standard asymptotic terms in decreasing exponents. 

In Section 2 the basic mathematical model of filtration, the governing equations and the properties 

of solutions are considered. Asymptotic solutions for a limited time and for a large time are 

constructed in Section 3. Section 4 is devoted to the construction of the uniform asymptotics. The 

results of numerical simulation are given in Section 5. The conclusion in Section 6 finalizes the paper. 

2.  Basic filtration model 

In the domain {( , ) :0 1, 0}x t x t     it considers the one-dimensional filtration problem of a 

suspension in a homogeneous porous medium. The concentrations ( , )C x t  of suspended particles and 

( , )S x t  retained particles satisfy the mass balance equation 

 0
C C S

t x t

  
  

  
, (1) 

 ( )
S

S C
t


 


. (2) 

Here  is a small positive parameter. 

For the uniqueness of the solution of the equations system (1), (2), the boundary and initial 

conditions are set 

 
0

1
x

C

 ; (3) 

 
0 0

0; 0
t t

C S
 
  . (4) 

It is assumed that the blocking filtration coefficient ( )S  has a simple root 

 ( ) ( ) ( ), 0S a S S a     , (5) 

where the function ( )S  is positive on the interval [0; ]a  and can be written in the series form 

 
2

0 1 2( ) ...S S S      . (6) 

Conditions (3) and (4) mean that a suspension of constant concentration is injected at the porous 

medium inlet 0x  , and at the initial time 0t   the porous medium does not contain any suspended 

and retained particles. So conditions (3) and (4) do not match at the origin, the problem solution (1) - 

(4) is discontinuous. The mobile boundary of the two phases, the concentrations front t x  of the 

suspended and retained particles moves in a porous medium with a velocity 1v   from the inlet to the 

outlet. The porous medium is empty before the concentrations front comes; suspended and retained 

particles are present behind the front. 

Before the concentrations front comes in the domain 0 {( , ) :0 1, 0 }x t x t x       the solution is 

zero; behind the front in the domain {( , ) :0 1, }S x t x t x      the solution is positive. 

On the front t x , the solution ( , )C x t  has a gap; the solution ( , )S x t  is continuous in . The 

continuity of the solution ( , )S x t  on the concentrations front t x  yields 

 0
t x

S

 . (7) 

In the domain S , the solution of problem (1) - (3), (7) coincides with the solution (1) - (4). 

In the characteristic variables ,t x x x     in the domain {( , ) :0 1, 0}S x t x       the 

problem (1) - (3), (7) takes the form 
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 0
C S

x

 
 

 
; (8) 

 ( )
S

S C


 


; (9) 

 
0 0

1; 0
x

C S
 
  . (10) 

3.  Local asymptotic solutions 

3.1.  Asymptotics for small  

An asymptotic solution is constructed in the series form in powers of the small parameter  

 
2 2

1 2 1 2( , ) 1 ...; ( , ) ...C x c c S x s s             . (11) 

Substitution of the expansions (11) into equations (8) and (9) and equating the coefficients for the 

same powers of  yields a system of recurrent ordinary differential equations of the first order 

 1 1 1 2 2 2
0 1 0 1 0 10; ; 0; ( )

c s s c s s
a a s a c

x x

     
          

     
. (12) 

From (10) the conditions for equations (12) are obtained 

 
0 0

0; 0; 1,2i ix
c s i

 
   . (13) 

The solution of the system (12), (13) 

      
2 2

2 2 2 2
1 0 1 0 2 1 0 0 0 2 1 0 0 0; ; ( ) ; ( )

2 2

x
s a c a x s a a a x c a a x a


                     . (14) 

Substitution of the solution (14) into (11) yields 

 
2

2 2 2 3
stand 0 1 0 0 01 ( ) ( )

2

x
C a x a a x a O

 
              

 
; (15) 

 
2

2 2 2 3
stand 0 1 0 0 0( ) ( )

2
S a a a a x O

 
              

 
. (16) 

In the variables x, t the standard asymptotics has the form 

 

2
2 2 2 3

stand 0 1 0 0 0( , ) 1 ( ) ( ) ( )
2

x
C x t a x a a x t x a O

 
              

 
. (17) 

 

2
2 2 2 3

stand 0 1 0 0 0

( )
( , ) ( ) ( ) ( ) ( )

2

t x
S x t a t x a a a x t x O

 
              

 
. (18) 

3.2.  Asymptotics for a large time 

For a linear filtration coefficient 0 0( ) ( ), 0, 0S a S a        in the domain S
  the problem 

(8) – (10) has the exact solution [14] 

 
0 0

0 0 0 0

1
;

1 1ax ax

e e
C S a

e e e e

   

     


 

   
. (19) 
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For large  the asymptotics of the solution (19) has the form 

 0 0 0 0 02 2 31 ( 1) ( 1) ( )ax axC e e e e O e         
       ; (20) 

  0 0 0 0 0 02 31 ( 1) ( )ax ax axS a e e e e e O e          
      . (21) 

In the general case, the asymptotic solution for the blocking filtration coefficient (5), (6) with a 

simple root S a  is analogous to the expansions (20), (21) and can be written as a series in powers of 

the decreasing exponent 0e   [13]. 

4.  Uniform asymptotic solution 

In order to construct an asymptotic solution that is uniform with respect to time, the constant and the 

powers 
2,   of the standard asymptotics (15), (16) are replaced by linear combinations of exponents 

0 0 02 3, ,e e e       
 with an accuracy 

3( )O   so the limiting relations (8) are satisfied. Substitution of 

the asymptotic formulas 
0 0 0 0 02 2 2 2

01 ( ); 1 2 ( ); ( ) ( );e O e e O e e O                         

 0 0 0 0 0 0
22 3 3 2 2 3 3

0 0

1 1
1 ( ); ( 2 ) ( )

2 2
e e e O e e e O                

               
 

; 

in the terms of the standard asymptotics (15), (16) gives 

  0 0 0

2
2 2 2 2 3

unif 0 1 1 01 ( ) ( )
2

x
C ax a e a e a e O                   ; (22) 

      0 0 0 0 0 0

2
2 3 2 2 31

unif 0

0

1 2 ( )
2

a
S a e e e e a x e e O              

          


. (23) 

In the variables x, t, the uniform asymptotics has the form 

  0 0 0

2
( ) 2 ( ) 2 2 2 ( ) 3

unif 0 1 1 0( , ) 1 ( ) ( )
2

t x t x t xx
C x t ax a e a e a e O                   ; (24) 

 
   

 

0 0 0 0

0 0

2
( ) ( ) 2 ( ) 3 ( )1

unif

0
2 ( ) 2 ( ) 3

0

( , ) 1 2
2

( ).

t x t x t x t x

t x t x

a
S x t a e e e e

a x e e O

         

    


     



    

 (25) 

The uniform asymptotic solution (24), (25) coincides with the standard asymptotics (17), (18) with 

accuracy 
3( )O   for small time. 

5.  Numerical modeling 

Consider the quadratic filtration coefficient 

 ( ) (1 )(2 )S S S     . (26) 

The exact solution of the problem (1) - (4) in the domain S  has the form [15] 

 
2 2 ( ) ( )

2 ( ) ( )
exact exact 2

1 2 (2 )
( , ) 1 ; ( , ) ; 1 4 ( 1)

x t x t x
x t x t xe e e

S x t C x t D e e e
D D D

     
     

     


.    (27) 

The calculation is performed for the parameters 0 10.1; 1; 2; 1a        . 

In Figure 1 (a), (b) graphs of suspended and retained particles concentrations at the porous medium 

outlet 1x   are presented: exact solution, standard and uniform asymptotics. 
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(a)                                                                     (b) 

Figure 1. Outlet concentrations 
1

( , )
x

C x t


(a); 
1

( , )
x

S x t


(b). 

 

Figures 2, 3 show the suspended and retained particles concentrations at fixed time 1t   and 5t  . 

 

  

(a)                                                                                    (b) 

Figure 2. Suspended concentration 
1

( , )
t

C x t


(a); Retained concentration 
1

( , )
t

S x t


(b). 

  

(a)                                                                              (b) 

Figure 3. Suspended concentration 
5

( , )
t

C x t


(a); Retained concentration 
5

( , )
t

S x t


(b). 
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Figures 1–3 show that at the outlet 1x   of the porous medium, the maximum deviation of the 

uniform asymptotics from the exact solution is 2% for 
1

( , )
x

C x t


 and 8% for 
1

( , )
x

S x t


. 

6.  Conclusion 

The uniform asymptotics of the one-dimensional filtration problem of a monodisperse suspension in a 

porous medium is constructed. In order to obtain the new asymptotics, the standard asymptotic 

solution for a small time and the asymptotics of the filtration problem in an almost stationary mode for 

large time were used. The standard asymptotics is transformed into a series of decreasing exponents - 

the asymptotic terms for a large time. It is shown that the new asymptotics is close to an exact solution 

for all values of time. 

The greatest deviation of the new asymptotics from the exact solution is observed for "average" 

time values in the range from 5 to 20. To reduce the error, it is necessary to increase the terms number 

of the standard asymptotics for a short time and to increase the accuracy with substituting the 

decreasing exponents. 

A uniform in time asymptotic solution makes it possible to cover all stages of the filtration process 

from an intense start at the initial moment to damping for a large time. The use of analytic solutions 

substantially reduces the amount and cost of laboratory research and field experiments [16]. 
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