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Abstract. The topical problem of investigation, development of numerical and analytical 

methods to research constructions, buildings and structures is stress-strain analysis of building 

structures with intricate shape of the boundary. Geometrically nonlinear shape of boundaries 

(notches, crosscuts) determines the occurrence of stress concentration zones, deformations with 

significant enormities and gradients. Theoretical analysis of stress-strain state (SSS) for angled 

cut-out zones of area boundaries under the action of ruptural forced deformations resolves 

itself to study the singular solutions of uniform problem of elasticity theory with degree type 

features. The novelty of the research in the present work is determined by the fact that SSS 

near the vertex of angled cut-out zones of area boundary is characterized by limit strains, 

similar to the stress-intensity factors KI, KII, KIII when applying force criteria in mechanics of 

damage. Two-dimensional Betti formula is used to determine the intensity factors as limit 

strains, for the area constrained by the contour-circle of small radius r = ε. The independence of 

the Betti integral from the integration path is taken into account, which allows us to consider 

the contour integral along the length of arc close to the circle r = ε. The limit strains obtained in 

angled cut-out zones of area boundary are analyzed depending upon the area cut apex angle 

and the eigenvalues of elastic problem for the case of boundary conditions homogeneous for 

stresses. 

1. Introduction 

Stress-strain state (SSS) of composite conduits in the corner areas of elements interface under the 

action of forced deformations, ruptural in the line (surface) of elements contact, characterized by the 

peculiarities of stresses and deformations. The purpose of this work is to determine the SSS in the area 

of arbitrary opening angled cut-out of area boundary having used stress intensity factors as limit 

strains.  

The elastic problem near non-regular points on area boundary singular line resolves itself into the 

two plain tasks [1–4]: planar deformation and out-of-plane deformation or out-of-plane shear.  

The peculiarity of the SSS due to the geometry of shape of boundaries (notches, crosscuts) is 

determined by the singularity of the solution, the order of which depends on the eigenvalues of the 

homogeneous elastic boundary value problem [1, 4–6]. The eigenvalues of the homogeneous boundary 

value problem depend on the shape of the boundary, the type of boundary conditions, and the 

mechanical characteristics of the material in the area, and have range space [7, 8]. Let us consider in 

more detail the solution of the elastic problem of planar deformation in the area of the vertex of planar 

domain angled cut-out. 
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2. Materials and Methods 

2.1. Setting and Solution to Problem  

To obtain asymptotic solution near non-regular point at vertex of angled cut-out, a solution of 

homogeneous boundary value problem for wedge is considered. Planar wedge area with opening 

2 [ , 2 ]    consists of two symmetric areas: 
1 , [0, ]   and 

2 , [ ,0]   , one of which has 

forced cooling strains ij ijT   . On the boundary of the contact areas 
1 2L   there is a rupture 

(jump) of deformations ij ijT    , going out to vertex of angled cut-out at area boundary. The forces 

concentrated are not considered. 

We introduce the polar system with the polar pole O (0.0) in vertex of angled cut-out at boundary 

and with the polar axis along wedge symmetry axis. Solution of a homogeneous elastic problem in 

movements for wedge infinite domain near corner at boundary is vertex of arbitrary opening angled 

cut-out is sought in the form of a product of two functions [1, 4, 6]: 

( )ru r g  , ( )u r f
  ,                                                (1) 

where   is unknown parameter, ( ), ( )f g   is unknown functions of angle  , to be determined. 

Applying (1) to the Lame equations, we obtain SSS depending on four arbitrary constants , , ,A B C D , 

to be determined:  

       r u Acos 1 sin 1 cos 1 sin 1r B C D                                , 

       2 2r u cos 1 sin 1 cos 1 sin 1B A D C

                                  , 

   

         

1 1

2 2

r 2 cos 1 2 sin 1

1 1 cos 1 1 1 sin 1

A B

C D


       

       

              

               ,            (2) 

   

         

1 1

2 2

r 2 sin 1 2 cos 1

1 1 sin 1 1 1 cos 1

r A B

C D


       

       

              

               , 

       1 1 3 3
r 2 {( cos 1 sin 1 cos 1 Dsin 1 }r A B C

k k

  
          

 

   
                       

, 

where 
E

2(1 )






, ,E   – modulus of volume elasticity, the Poisson ratio of area material 

respectively, 
2

3 4

3 4

 


 

 


 
, 

2

2
1

k







 


, 3 4k   ,   are the eigenvalues of the homogeneous 

boundary value problem.  

Satisfying homogeneous boundary conditions: 0r     at    , two homogeneous 

systems of equations are obtained: 

 
2

2

2 Acos[(1+ ) ] (1 )(1 ) cos[(1 ) ] 0,

2 Asin[(1+ ) ] (1 )(1 ) sin[(1 ) ] 0,

C

C

      

      

    


    
                                     (3a) 

2

2

2 sin[(1+ ) ] (1 )(1 ) sin[(1 ) ] 0,

2 Bcos[(1+ ) ] (1 )(1 ) cos[(1 ) ] 0,

B D

D

      

      

    


    
                                      (3b) 

In order that homogeneous boundary value problem has non-zero solutions; it is necessary and 

sufficient that the determinants of each of the systems (3a) and (3b) are zero. The determinant of (3a): 

sin2 sin2 0     or sin2 sin2    .                                         (4) 
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For λ, which is the root of this equation, for SSS (2), we must keep the summands with coefficients 

A and C (B = D = 0). Let us indicate 
i
 root system of equation (4).The second determinant of system 

of linear equations (3b): 

sin2 sin2 0      or sin2 sin2   .                                         (5) 

For λ, which is the root of this equation (5), for SSS (2), we must keep the summands with 

coefficients B and D (A = C = 0). Let us indicate 
i
 root system of equation (5).  

Characteristic equations (4), (5) have an infinite aggregate of eigenvalues ,i i   . The values 

1i   result in unlimited stresses at infinity. The values 0   result in unlimited displacements at 

vertex of angled cut-out in the absence of loads on the boundary of area cut. According to the physical 

meaning of value task [0,1]i  . Among many roots of (4), (5) to build asymptotic solutions to (2) the 

following is selected minRe i   , minRe i   , because subsequent large values i  result 

in unlimited increase in deformation energy. 

Taking into account the boundary conditions (3a), (3b), the relations for the coefficients A and C,  

B and D are obtained: 

 

(1 ) sin (1 )

sin (1 )
A C

k

  

  

 

 

   


   

.                                                    (6) 

 

(1 ) sin (1 )

sin (1 )
B D

k

  

  

 

 

   


   

.                                                     (7) 

We indicate limit strains near non-irregular point of the area boundary as: 
1

, 0
0

K limI
r

r 

 





 .                                                           (8) 

1

, 0
0

K limI I r
r

r 

 





 .                                                           (9) 

Taking into account designations (8), (9) and the relations (6), (7) the coefficients A and B, C and 

D are expressed through limit strains in the form of:  

   

       

1 sin 1

2 1 sin 1 1 sin 1
IA K

  

       

 

   

  
 


        

    

,                 (10a) 

   
 

       

(k- ) sin 1

2 1 sin 1 1 sin 1
IС K

  

       

 

    

 
 


        

    

,                 (10b) 

   

       

1 sin 1
B

2 1 sin 1 1 sin 1
I IK

  

       

 

    

  
 


        

    

,                 (10c)

 

       

(k- )sin 1

2 1 sin 1 1 sin 1
I ID K

  

       

 

    

 
 


        

    

.                 (10d) 

2.2. Stress-strain state near vertex of area boundary angled cut-out 

Taking into account the coefficients (10), the solution of the homogeneous boundary value problem 

(2) near vertex of area boundary angled cut-out is written as: 

       u r {Acos 1 cos 1 } r { sin 1 sin 1r C B D        
                  

       
, 

       2 2u r { sin 1 sin 1 } r { cos 1 cos 1 }A C B D 

          
                     

       
, 
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      

      

1

2

1

2

r { 2 cos 1 1 1 cos 1 }

r { 2 sin 1 1 1 sin 1 }

A C

B D







        

       





     

     

          
   

         
   

,                 (11) 

      

      

1

2

1

2

r { 2 sin 1 1 1 sin 1

r {2 cos 1 1 1 cos 1

r A C

B D







        

       





     

     

          
   

        
   

, 

   

   

1

1

3
2 r {( cos 1 cos 1 }

3
2 r { sin 1 Dsin 1 }

r A C
k

B
k






     




    








  




  




       
   


      
   

, 

where the coefficients A, B, C, D satisfy relations (10).  

Taking into account the aggregate of eigenvalues
i   of solutions to equations (4), (5) the solution 

of the elastic problem in angled cut-out zones of planar domain boundaries has the form: 

   

   

,

,

u r {A cos 1 cos 1 }

r { sin 1 sin 1 u

i

i

i

i

r i i i i

i

s

i i i i r

i

C

B D









   

   









 

 

       
   

       
   




, 

   

   

2

,

2

,

u r { sin 1 sin 1 }

r { cos 1 cos 1 } u

i

i

i

i

i i i i

i

s

i i i i

i

A C

B D













    

    









  

  

        
   

       
   




, 

      

      

1

2

,

1

2

,

r { 2 cos 1 1 1 cos 1 }

r { 2 sin 1 1 1 sin 1 }

i

i

i i i i i i

i

s

i i i i i

i

A C

B D













        

        









     

     

          
   

          
   




 

      

      

1

2

,

1

2

,

r { 2 sin 1 1 1 sin 1

r {2 cos 1 1 1 cos 1

i

i

i

r i i i i i i

i

s

i i i i i i r

i

A C

B D













        

        









     

     

         
   

         
   




,         (12) 

   

   

1

,

1

,

3
2 r {( cos 1 cos 1 }

3
2 r { sin 1 D sin 1 }

i

i

i

i

i
r i i i i i

i i

si
i i i i i r

i i

A C
k

B
k










      




      












  




  




       
   


       
   




, 

where 
s

iu , 
s

ij  - displacements and stresses due to the action of the required loads or the general field 

of displacements and stresses - the set forced cooling strains having discontinuity along the axis of 

wedge symmetry 0   of the type: ij ijT    . 

Coefficients A, B, C, D according to (10) are expressed in terms of limit strains KI, KII; therefore, 

the stress-strain state near non-regular point at area boundary depends on the parameters KI, KII, and is 

written as: 
1 1 1

, , ,
K ( ) K ( ) [ ( ) ( )]i i

i i
i

s

I I I i i ii i i i
i

r f r f r C f r C f uu
  

   
     

  

   

       ,    (13a) 
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, , , ,
,

K ( ) K ( ) [ ( ) ( )]i i

i i

s

I I I i i iji ij ij ij ij
i j

j r f r f r C f r C f
  

   
     

  

       ,        (13b)  

where minRe i   , minRe i    are the solutions of characteristic equations (4), (5), 

respectively; 
, ,

( ), ( )
i i j

f f
 
    are the angle functions [ , ]    , ( , )i ru u u  are the 

displacements, ( , , )ij r r      are the stresses in which the main expansion term is allocated 

recorded by the intensity factors KI, KII; s

iu ,
s

ij  are the displacements and stresses due to action of set 

forced cooling strains. 

2.3. The definition of limit strains KI, KII planar area boundary angled cut-out 

Taking into account SSS of the form (13), the principal member of the asymptotic solution of the 

problem near non-regular point at the area boundary takes the form: 
1 1

,
K ( ) K ( ) ( )I I Iii i

r f r fu o r  

 
  

 

 

   ,                              (14a) 

     1 1 1

, ,
K ( ) K ( ) ( )I I Iij ii j j

r f r f o r  

 
 

 

 

        ,                              (14b) 

Where  = min(-
, +

). Near non-regular point O (0.0) of area boundary the order of singular behavior 

for the stresses is ( 1), [0.5; 1]   , 
1

0
lim
r

r


  , in addition average stress (14b) in a small 

neighborhood of this point is finite. This follows from the convergence of the improper integral: 

, 1

\

1

,

1

,
lim liK ( ) ( ) ( )m

n n

I II ij ij ijn n
C U

rdrd
K K drd

r
r f f f r

 






 



 


  




 
 

       , 

where  n  is a sequence of neighborhoods centered at the beginning of the polar system (not 

including the vertex of boundary angled cut-out) in the form of central sectors which radii are
n , 

lim 0n
n




 . For angle function 
,

( ) 1
ij

f

   the value of improper integral: 

1
12 2

lim ( )
1 1n

I I I
n

K K



 


 






 
. 

Vertex area of boundary angled cut-out can include multiple subdomains: plastic deformation area 

where the finite deformations, the area of elastic (linear and nonlinear) deformations, for which, in the 

framework of the linear elastic problem, a singular SSS with a power singularity is written with the aid 

of limit strains in the form (14). If the area of material non-linear properties is sufficiently small, then 

there exists a neighborhood near non-regular point in which the expressions (14) define the stress 

distribution reasonably accurate confirmed by investigational studies of solutions in such an area  

[9-16]. For such an area of non-regular point of area boundary, the coefficients KI, KII of the type (8), 

(9) of solution (14) are defined. 

We consider the solution of the problem in a planar domain D
near non-regular point O (0.0) 

limited by contour C, which consists of arc of circle С
 with radius  , of straight portion MN and 

QP at boundary    , of arc 
LС  of other circle of arbitrary small radius 

LС  , with the positive 

direction of area boundary girdle. Functions iu , i j  are continuous and have continuous derivatives up 

to the second order inclusive in the area D
. Let us write the second Green's formula for the area D

: 

       * *

L

N N N N N N

C C CD

d T T dl T T dl T T dl


         


                  .        (15)  

The contour integral over the segments MN and QP is equal to zero. Functions ,   are harmonic, 

they satisfy Lame equations, hence the integral (15) as a two-dimensional integral Betty is rewritten in 

the form of: 
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   
L

N N N N

C C

T T dl T T dl    


        ,                                       (16) 

where ( , ),r Nu u T   ( , )r    are the components of balanced stress-strain state in the area D
 

near the point O (0.0), satisfying homogeneous boundary conditions (3) and Lame homogeneous 

equations. 

According to (16) for calculations KI, KII two balanced stress-strain states of a homogeneous 

boundary value problem of the form (14) are chosen, satisfying (3). 

The first SSS has the form (14), the second SSS can be taken as a solution (14) for the parameter 

(-). The contour integral (16) for the arc С
, r =  will be written in a form of:  










 



,...)~~~~()~~~~( rduuuuduuuu rrrrrrrrrrr

C

r          (17) 

where , , ,r r ru u    is SSS of a type (14),   rrr uu ~,~,~,~  is SSS obtained according to SSS of a type 

(14) by substitution   for (-). Subintegral function at quadrature around :C r   depends on angle

[ , ]     and computed explicitly I=CI KI+CII KII , where CI and CII are unknown constants, CiR. 

Taking into account the independence of contour integral from paths of integration (16), for 

definition of coefficients ,I IIK K  another paths of integration is considered 
LC  close to :C r  . 

The contour integral along the arc, 
LC will be written in a form of: 

,)~~~~(  



duuuu rrrrr

L

r                                          (18) 

where ur, u, r, r are the SSS of a type (11), written taking into account the homogeneous boundary 

conditions, i.e. relations (6), (7),   rrr uu ~,~,~,~  are the SSS obtained according to SSS of a type (11) 

by substitution   for (-). The integral of a type (18) depends on 
1 2,С С . As a result of the integration 

on the second curve 
LC  expression is obtained: 

1 1 2 2С I С I , where values I1, I2 are obtained by 

integrating (18). Equating the expression (17), (18), the coefficients are obtained KI, KII. 

Examples of integrals (17), (18) calculations, values KI, KII for different angles of wedge opening 

and eigenvalues of homogeneous boundary value problem are given in Tables 1 - 3. Table 3 shows 

limit strains 1

, 0
0

K limI
r

r 

 




 , 1

, 0
0

K limI I r
r

r 

 





  (intensity coefficients) in the vertex area of 

boundary angled cut-out, that are proportional to some constants, which can be selected the regulatory 

limit strains for designs or materials. According to the results obtained, the coefficients KI, KII as the 

angle of the wedge opening decreases, which corresponds to a decrease in the influence of the 

"singularity" of the form 
1r , while the change in coefficients occurs in different ways. 

 Table 1. Example of integral calculation (17) for different angles of wedge opening of boundary. 

Eigenvalues (3a)

minRe  

Eigenvalues (3b)  

minRe  

Angle of wedge 

opening, 2  

Integral (17) 

0.5 0.5 360
o
 1 1 2 22.35 3.93С K С K  

0.512 0.73 300
 o
 1 1 2 22.41 2.3С K С K  

0.563 0.98 260
o
 1 1 2 22.81 1.48С K С K  

 Table 2. Example of integral calculation (18) for different angles of wedge opening of boundary. 

Eigenvalues (3a) 

minRe  

Eigenvalues (3b)  

minRe  

Corner of wedge 

opening, 2  

Integral (18) 

0.5 0.5 360
o
 1 22.36 C +5.25 C  

0.512 0.73 300
 o
 1 22.29 C +2.96 C  
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 Table 3. Intensity coefficients KI,KII in the vertex area of boundary angled cut-out. 

Eigenvalues (3a) 

minRe  

Eigenvalues (3b)  

minRe  

Corner of wedge 

opening, 2  

The values of the coefficients 

KI, KII 

0.5 0.5 360
o
 1.004 , 1.34s s

I I I I IIK K K K 
 

0.512 0.73 300
 o
 0.95 , 1.28s s

I I I I IIK K K K 
 

0.563 0.98 260
o
 0.79 , 0.45s s

I I I I IIK K K K 
 

3. Conclusions 

In this paper, stress strain state near vertex of angled cut-out of planar domain is obtained. The 

principal member of the asymptotic of elastic problem solution near non-regular point at area 

boundary is given. Using the 2D Betti formula for a planar domain with angled cut-out at the 

boundary, limit strains are obtained that allow analyzing the influence of the change in the opening 

angle of angled cut-out at planar domain, the eigenvalues of the homogeneous boundary value elastic 

problem, on the limit strains at the vertex of angled cut-out of domain (the "singularity" of the 

solution). The proposed approach to the SSS study in the area of angled cut-out at planar domain 

boundary makes possible to determine and analyze the SSS in the area of arbitrary opening angled cut-

out of area boundary by means of the stress intensity factors, as the limit strains.  
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