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Abstract. Filtration describes a variety of the construction complex problems: strengthening 

loose soil to create a solid foundation, the movement of groundwater with solid impurities near 

underground structures, and many others. A model of two-sized deep bed filtration particles 

moving with different velocities in a porous medium with three-size pores is considered. The 

competition of pores and various size particles for deposit formation is modeled. Solutions are 

constructed at the porous medium inlet and on the concentrations front of the fast particles. For 

constant filtration coefficients, a global exact solution is obtained. Numerical calculation 

illustrates the evolution of the filtration process. 

1.  Introduction 

The transportation and retention of solid particles by the fluid flow describe strengthening loose soil to 

create a solid foundation, the construction of underground and hydraulic structures, and so on. The 

filtration problems have wide applications in the construction complex [1, 2]. The migration of 

groundwater solid impurities, the displacement of the grout, pumped into lose ground is described by 

various mathematical filtration models of a suspension in a porous medium [3, 4]. Exact and 

asymptotic solutions for some models are obtained [5–7]. In the general case, analytical solutions are 

unknown, and the problem is solved numerically [8–10]. 

The paper considers a filtration model for two-size particles 1 2 1 2, ( )d d d d  moving in a fluid 

flow with different velocities. If the sizes of particles and pores are of the same order, the main cause 

of deposit formation is the geometric mechanism of particle capture: the particles freely pass through 

large pores and get stuck in the pore throats, smaller than the particle diameter [11]. Assume that the 

porous medium has pores of three various diameters 1 2 3, ,D D D , and 1 1 2 2 3D d D d D    . All 

particles pass freely through the pores 1D  and get stuck at the inlet of the pores 3D . Large particles 1d  

get stuck in the pores 2D , and small particles 2d  pass through them unhindered (Figure 1). 

The flow rate increases with the cross section of the pore. If large particles pass only through large 

pores 1D , their velocity 1  is greater than the average speed 2  of small particles 2d  passing 

through the big pores 1D  and medium pores 2D . The filtration of two-size particles moving with 

different velocities was studied in [12]. However, there are no medium pores in this model, which 

substantially simplify the structure of the porous medium and the particles-pores interaction. 

A mathematical model of the filtration problem for two-size particles moving with different 

velocities in a homogeneous porous medium is constructed in Section 2. In Section 3, local solutions 
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are obtained on the concentrations front of the fast particles and at the porous medium inlet. In Section 

4, a global solution is constructed for constant filtration coefficients. The results of numerical 

calculations are given in Section 5. Conclusions in Section 6 finalize the paper. 
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Figure 1. Transport and retention of 2-size particles. 

2.  Mathematical model 

The one-dimensional filtration problem of a two-size particles suspension in a homogeneous porous 

medium is considered in the domain 

{( , ) :0 1, 0}x t x t    . 

For each size of the particle , 1,2id i  , the suspended and retained particles concentrations iC  and 

iS  satisfy the mass balance equation 

 0i i i
i

C C S

t x t

  
  

  
, (1) 

and the kinetic equation of deposit growth rate 

 , 1,2i
i i

S
C i

t


  


. (2) 

Here i  are the particle velocities, 2 10  ; ( )i S  are the filtration coefficients, depending on 

the deposit concentration. 

A suspension of constant concentration is injected into the porous medium inlet; at the initial time, 

the porous medium does not contain suspended and retained particles. The corresponding boundary 

and initial conditions have the form 

 
0

, 0i i ix
C p p


  ;                                           (3) 

 
0 0

0; 0; 1,2i it t
C S i

 
   . (4) 

Consider the transportation and retention of particles in the pores in detail, the deposit 2S  of small 

particles 2d  is formed only in small pores 3D  (Figure 1). The deposit 1S  of large particles 1d  is 

distributed between the pores 3D  and 2D : 

 
3 2

1 1 1S S S  .  (5) 

The deposit in medium pores 2D  

        
2 2

1S S ; 

the total deposit in small pores of diameter 3D  
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 3 3
1 2S S S  . (6) 

When all small and medium pores are clogged, the pore deposits 2 3,S S  reach its maximum values 

 max lim ; 2,3i i

t
S S i


  . (7) 

If the porous medium is homogeneous, the limit deposits max
iS  do will not depend on the coordinate 

x. The maximum limit deposit 

 2 3
max max maxS S S  . (8) 

The maximum deposits (7), (8) are assumed to be known, since they are determined by the 

concentrations of 3-size pores in a porous medium. 

The deposit growth rate depends on the number of free pores that can be blocked by particles. We 

assume that the filtration coefficients are linear. It follows from (5) - (8) that for a porous medium with 

3-size pores equations (2) take the form 

 
2

2 2 21
1 max 1 1( )

S
S S C

t


  


;  

3
3 3 31
1 max 1 2 1( )

S
S S S C

t


   


;  

3 3 32
2 max 1 2 2( )

S
S S S C

t


   


. (9) 

The concentration fronts of fast and slow particles / , 1,2it x i    divide  into 3 subdomains 

0 1{0 1, / }x t x      ;  1 1 2{0 1, / / }x x t x        ;  2 2{0 1, / }x t x      . 

In the domain 0 , the porous medium is empty; in 1  only suspended and retained fast particles 

1d  are present; there are all types of particles 1 2,d d  in the domain 2  (Figure 2). 
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Figure 2. 2-size particles in a porous medium. 

 

The solutions ( , )iC x t  are discontinuous on the concentrations front / , 1,2it x i   ; the solutions 
2 3
1 1 2, ,S S S  are continuous in the domain . 

3.  Local solutions 

3.1. The solution on the concentrations front of the fast particles 

The solution on the concentrations front 1/t x  : 2 1 20; 0C S S    (see Figure 2). 

Substitution of (5), (9) into equation (1) for 1i   gives 

 1 1
1 1 0

C C
C

t x

 
   

 
,   

2 2 3 3
1 max 1 max( ) ( )S S   . (10) 
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The solution of equation (10) with the condition (3) 

 
1

1 1 1/
( , ) exp( / )

t x
C x t p x

 
   . (11) 

3.2. The solution at the porous medium inlet 

According to condition (3), at the porous medium inlet 0x   equations (9) have the form 

 
2

2 2 21
1 max 1 1( )

S
S S p

t


  


;  

3
3 3 31
1 max 1 2 1( )

S
S S S p

t


   


;  3 3 32

2 max 1 2 2( )
S

S S S p
t


   


. (12) 

The solution of the first equation (12) with the condition (4) 

 

2
1 (0, )

12 2
1 max0
( )

S t
dS

p t
S S


  . (13) 

Addition of the second and third equations (12) and the use of the notation (6) yields 

 
3

3 3 3 3
max 1 1 2 2( ),

S
S S p p

t


       


. (14) 

The solution of equation (14) with the condition (4) 

 
 

3 (0, )

3
max0

S t
dS

t
S S


 

 . (15) 

Using (15), the solutions of the second and third equations (12) are obtained 

    3 3 3 3 3 3 3
1 1 1 max 2 2 2 max

0 0

(0, ) (0, ) ; (0, ) (0, )

t t

S t p S S t dt S t p S S t dt       . (16) 

4.  Exact solution for constant coefficients 

For constant filtration coefficients the system (1), (2) takes the form 

- in the domain 1 : 

 
2 3

2 3 3 21 1 1 1 1
1 1 1 1 1 1 1 10; ; ;

C C S S S
C C S S S

t x t t t

    
        

    
; (17) 

- in the domain 2 : 

        
2 3

2 3 3 2 31 1 2
1 1 1 1 1 1 1 2 20; 1,2; ; ; ;i i i

i

C C S S S S
i C C S S S C

t x t t t t

     
           

     
; (18) 

with the conditions (3) and conditions on the concentrations fronts 

 
0 /

; 0; 1,2
i

i i ix t x
C p S i

  
   . (19) 

The solution of the system in the domain  is given below (Figure 2). 

In the domain 0 : 

 ( , ) 0; ( , ) 0; 1,2i iC x t S x t i   . (20) 

In the domain 1 : 
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1 1 1/ 3 3 / 2 2 /
1 1 1 1 1 1 1 1 1 1

2 2

( , ) ; ( , ) ( / ); ( , ) ( / );

( , ) 0; ( , ) 0.

x x xC x t p e S x t p e t x S x t p e t x

C x t S x t

             

 
 (21) 

In the domain 2 : 

 

3 3
1 2 2 2 2

1 1

/ / 3 /
1 1 2 2 2 2 2 2

3 3 / 2 2 / 2 3
1 1 1 1 1 1 1 1 1 1

( , ) ; ( , ) ; ( , ) ( / );

( , ) ( / ); ( , ) ( / ); .

x x x

x x

C x t p e C x t p e S x t p e t x

S x t p e t x S x t p e t x

     

   

     

           
 (22) 

5.  Numerical modeling 

To calculate the solution (20) - (22), the following parameters are selected: 
3 3 2

1 2 1 2 2 1 11; 0.5; 1; 0.5; 1; 1.5p p             

In Figures 3-5 graphs of suspended and retained particles concentrations are presented for 

0.5; 1; 5t  . The graphs of 
3

1 1,C S  are drawn by a dashed line, 2 2,C S  - by a solid line, and 
2
1S - by a 

dotted line. 

 

  
(a)                                                                                       (b) 

Figure 3. Concentrations Suspended 1 20.5 0.5
;

t t
C C

 
(a); Retained 3 2

1 1 2 0.50.5 0.5
; ;

tt t
S S S

 
(b). 

 

  
(a)                                                                                       (b) 

Figure 4. Concentrations Suspended 1 21 1
;

t t
C C

 
(a); Retained 3 2

1 1 2 11 1
; ;

tt t
S S S

 
(b). 

 

In Figures 3-5, the suspended and retained particles concentrations are zero before its front and are 

positive behind the front. The large particles concentrations front moves faster than the small particles 

front. Graphs 3-5 b) show that the formation of large and small particles deposit occurs most 

intensively at the porous medium inlet; the suspended and retained concentrations of both particles 

types decrease with increasing distance x to the inlet. 
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(a)                                                                                       (b) 

Figure 5. Concentrations Suspended 1 22 2
;

t t
C C

 
(a); Retained 3 2

1 1 2 22 2
; ;

tt t
S S S

 
(b). 

 

6.  Conclusion 

The filtration problem of a suspension with two-size particles in a porous medium with three-size 

pores is considered. A mathematical model describing the competitions of large and small particles for 

blocking small pores and of small and medium pores for large particles retention is constructed. 

It is shown if large and small particles move with different velocities, two concentrations fronts 

propagate in a porous medium. Before the fast particles front, the porous medium is empty. Only large 

suspended and retained particles are present between the fast and slow particles fronts. There are 

particles of all types behind the slow particles front. 

Local exact solutions are constructed on the characteristics of the system, at the porous medium 

inlet and on the concentrations front of the fast particles. For constant filtration coefficients, a global 

solution is obtained. 

Exact solutions give way to construct the asymptotics, which depends explicitly on the parameters 

of the problem, allowing fine-tuning of the experiments and production processes [13]. This is the 

subject of another study. 
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