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Abstract. The sample selection model is a combination of the regression and probit models. The
models are usually estimated by Heckman's two-step estimator. However, Heckman's two-step
estimator often performs poorly. In the context of the parametric method, Monte Carlo
simulations are studied. The goal is to simulate and test as early as possible so that we can
anticipate the problem of the accuracy of a model. The best approach is to take advantage of the
tools provided by the theory of fuzzy sets. It appears very suitable for modeling vague concepts.
It is difficult to determine some of the criteria and arrive at a quantitative value. Fuzzy sets theory
and its properties through the concept of fuzzy number. The fuzzy function used for solving
uncertain of a parametric sample selection model. Estimates from the fuzzy are used to calculate
some of equation of the sample selection model. Finally, estimates of the Mean, Root Mean
Square Error (RMSE) and the other estimators can be obtained by Heckman two-step estimator
through iteration from some parameters and some of values.
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1. Introduction

The sample selection was developed by Heckman. Sample selection is widely used in various fields of
economics. An early discussion of the problem of self-selectivity was that of [1], who discussed the
problem of individuals selecting between hunting and fishing, based on their comparative advantage.
The observed distribution of incomes of hunters and fishermen was defined by these choices [3].

The self-selectivity model that focused on selectivity bias was discussed by [4]. [5] introduced a
two-step selection model, known as the Heckman two-step sample selection model. The sample
selection bias problem in the context of decision by women to participate in the labor force is discussed
by [1], [4], [6], [7], [8], [9] and [10].

The disadvantage of this sample selection model is the dependence on the distribution assumption.
If the error is heteroskedastic or an abnormal estimate, then it will cause inconsistency [1]. While this
may be flexible, through the use of different distribution assumptions, it is interesting to consider
alternatives that have limited dependence on parametric assumptions. An alternative to overcome the
lack of parametric problems is through the use of semi-parametric methods. This approach will reduce
the effective dimension of the estimation problem. This proposal will be present on how the sample
selection model works in the context of the parametric model for non-participants.

2. Parametric Sample Selection Model
[11] has proposed the parametric sample selection model as follows :

Yi =xB+uy

* '
d =w.a+v,

¥ =i, (1
_{1 if  d >0

1

0 otherwise
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The variables yf" and §* are unobserved, whereas y; is observed. yf‘ and §* are dependent variables,

1 1
x; and w; are vectors of independent variables, a and 3 are unknown parameter vectors, u; and v; are
error terms.
In Equation (1), there are error terms (u, v) which are usually correlated, so that the regression of
y on x will not a give consistent estimates of o and Pi. The approach of the error terms (u;, vi) are
assumed to follow a bivariate normal distribution. It is commonly assumed that ujand v; have a bivariate

normal distribution:
u. 0||6? o
1 _ BN s u uv 2
|:Vi:| I:|:O:| |:Guv 63 :|:| ( )

According to [12], [13] and [15], there are two parts in Equation (1). The first part is participation
equation (a binary decision equation). The second part is the wage equation (outcome equation or
selection part). Independent variable x; usually contain at least one variable which does not appear in
variable wi. The outcome equation describes the relationship between the dependent variable y; and
independent variable x;, whereas in the selection equation describes the relationship between the
dependent variable d; and the independent variable wi.

Alpha cuts are simply threshold levels that convert a fuzzy set into a crisp set. The process of
converting a fuzzy set to a crisp one is called defuzzification. An alpha-cut A of a fuzzy number A is
defined as the set {x € R | A(x) > a}. A is completely determined by the collection (A )a €[0,1].

An alpha cut is the behaviour sensitivity of the system to the behavior under observation. At some point,
as the information value diminishes, one no longer wants to be "bothered" by the data. In many systems,
due to the inherent limitations of the mechanisms of observation, the information becomes suspect below
a certain level of reliability. The fuzzy model will be written as follows:

¥ =%p+T,

d, =1 if

d, =0 otherwise
y,=9y.d, ,i=L.N
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The terms W, X,, Vi, U, and V, are fuzzy numbers with the membership functions Mg Mg
s Mo By and g , respectively. In MPSSM error term assumed to follow the bivariate normal

distribution, then the error term for FMPSSM also follows the bivariate normal distribution, namely:

2
(uic ’ Vic ) ~ N (O’ ( G“ GUV jj .
c, |

The first step is to estimate the coefficient values of a and B. Then the values of these parameters
are applied to the parametric model to obtain the value of the Heckman coefficient estimates of a, § and
Guy. There are two steps in the estimation of the parameter according the Heckman model, namely the
first step (probit model) to estimate f3:

P(d(d;, >0|x)=1=E[d|x]=®(W a) (4)
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The second step (OLS) is to estimate the regression function by using only observations for

d(d >0|x)=1
E(y1 |Xi):W;a+puVGu7A\‘ (5)

Where A= (—w, &)/ ®(w, Q) is inverse mills ratio. Observed y; on x; and 71, where A is

inserted into the decision equations the additional regressor. In this step, an estimation of the parameters
of an outcome equation, i.e. selected data is the significant parties of interest. The error terms of the
decision and outcome equations should be strongly correlated. Since the real data is generated by a
process that satisfies the assumption of the MPSSM, then the coefficient estimates of data generated are
quite close to the true coefficients. The following are the procedures of data implemented from crisp
data to fuzzy data. First, the real data which involved uncertainties are fuzzified using fuzzy a-cut. The
arithmetic operation on fuzzy a-cut, for instance the a-cut method is applied to the data through the
fuzzy environment process. This process converts the real data to fuzzy observationsw , x = and ¢

with lower and upper membership functions. The defuzzification method is used to convert this fuzzy
observations into crisp values w , x _ and y . To estimate the parameters fuzzy parametric sample

selection model, these values are applied using the Heckman Two Step procedures.

The membership function is cut horizontally at a finite number of a-levels between 0 and 1. For
each a-level of the parameter, the model is run to determine the minimum and maximum possible values
of the output. This information is then directly used to construct the corresponding fuzziness
(membership function) of the output which is used as a measure of uncertainty. If the output is
monotonic with respect to the dependent fuzzy variable, the process is rather simple since only two
simulations will be enough for each a-level (one for each boundary). Otherwise, optimization routines
have to be carried out to determine the minimum and maximum values of the output for each a-level
[2]. Figure 1 shows an illustration of the alpha-cut of triangular fuzzy number.
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Figure 1. The alpha cut of triangular fuzzy number

From Figure 1, the confidence fuzzy interval defined by different value of alpha cut. For example,
a(0.4) and (0.8), then their confidence fuzzy interval are [Br, Bu] and [Cr, Cu]. This relationship denoted
by (a(0.4), [Br, Bu]), and (a(0.8), [Cr, Cu]) with [Br, Bu] > [Cy, Cul.

3.  The Model
In this section the model of participant, non-participant, and combination of participant and non-
participant are discussed. The model is written as follows:
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Y, 1f d;=0
Ty, if do=1

{l, ifw.a+v, >0

0, otherwise

(6)

e
Il

Where d; is a selection equation of the first stage. The values of d; are 0 and 1 which is di=1 for
participant and di = 0 for non-participant. y; is dependent variable of the outcome equation. In the
Equation (2) is derived into two, i.e. yo and y;. yo is referred to the outcome of the Equation (2) is non-
participant, whereas y; for participant. x; is independent variable. The details about the equation of y;
and yo are as follows:

YZi = X'OiBO + Uy if di=0 )
y; X tuy if di=1 (®)

1

Where ug; and uy; are error terms. The outcome equation for non-participant and participant in
Equation (2), can be summarized as follows:

Yio YZi (I1-d)) for non-participant 9)

Yn 7 yl*idi for participant (10)

Hence, the combination of both non-participant and participant, will generate the equation, as
follows:

Yyi = ygi(l_di)+YTidi (11)

4. Monte Carlo Simulation Of Parametric Sample Selection Model
The purpose of the Monte Carlo simulation is used to calculate the values of the sample selection model
[14]. The fuzzy model for Monte Carlo simulation is as follows:

v =B +BX; +u; (12)
d, =1(a, +a, W, +V, <0) (13)

The following items are considered in the Monte Carlo study:
- The effect of the correlation of X; and W,

- The effect of the correlation of U, and V,

X, and W, are the exogenous or independent variables and the values are as follows:

W, =5, , (14)
~ [n§1 +(1_TE)SZI]
> > (15)
n°+(1-m)

S, and s ,; are independent and identically distributed (i.i.d.) random variables distributed uniformly
on (0,20).



International Conference on Design, Engineering and Computer Sciences 2018 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 453 (2018) 012008 doi:10.1088/1757-899X/453/1/012008

The values of the exogenous variables, X; and W, are as follows:

§,; and s, are random uniform variables with mean = 0 and variance = 20. 7 is the correlation
coefficient of X, and W,with == 0.0, 0.5, and 0.9 are considered. The fuzzy error terms {(U;, V,)} are
jointly normal and determined as follows:

~

V, =€, , (16)

3 = Po&; +(1-p)E,
p02 "'(1_po)2

(17

The {€, } are normal random variables with mean = 0 and variance = 1. The {€, } are i.i.d. normal random
variables with mean = 0 and variance = 100. The {€,;} and {€,} are independently distributed. p,, is the

correlation coefficient of U, and V, with values of po = 0.0, 0.5, and 0.9 considered. The error terms

are calculated twice, which is for the classical error terms as well as the fuzzy error terms. p from [-0.99,
0.99] with interval 0.01. The true values of the parameters are Bo=-10.0, Bi=1.0, 0o =-1.0, and o, =
0.1,

Our hypothesis is Ho: B1 = 0 against H;: B; # 0. If the hypothesis testing fails to reject Ho, meaning
that the model does not reflect our data. The sample sizes n=100, 200, and 400 are considered with 1000
replications on each sample size.

True value is the actual variation that would be measured. In this case, so that the expected results
are similar to the entered value, the true value for fo and P are -10.0 and 1.0 is expected to result from
these estimates and values. The chosen sample size, n = 100, 200 and 400 are only example values,
this value is expected to meet the minimum value that should be taken, should we take another value,
e.g. 101, 213, 379, etc. The larger the sample size and replication, the better. So as the normal random
value is generated, this value is exemplified by a normal distribution (0.1) which means normal
standards of raw materials, normal distribution (0.100) and the uniform normal distribution (0.20). This
simulation will be measured in the range and value, so hopefully the results will be in the range of the
accepted values.

5. Results
The calculation of Monte Carlo simulation from Table 1 to Table 4 using fuzzy a-cut 0.2, 0.4, 0.5, 0.6,

0.8, and 1.0. The effect of correlation can be viewed from the fuzzy exogenous variables between w

and X and the effect of correlation of fuzzy error terms between U and V , and the effects of
comparison among several different sample sizes are n = 100, n = 200, and n = 400, shown in the table
on the columns 1, 2 and 3, while columns 4, 5, 6 and 7, 8, 9 show Mean, SD and RMSE of parameter o
and B, where SD is standard deviation and RMSE is root mean square errors.

Result is shown from Table 1 to Table 4 are the Mean, SD, RMSE with n=100, 200 and 400 for
parameters of o, Bi. From this table, represented the a-cuts of triangular fuzzy number with a value of
0.2, 0.4, 0.5, 0.6, and 0.8. The first column shows the parameter of phi with values 0.0, 0.5, 0.9, while
the second column shows the parameter of rho with a value of 0.0, 0.5, 0.9.

Table 1 shows that the mean of parameters of By and 3 showed about the consistency information
of the parameter estimator that approaches the true values, while the SD and RMSE provide information
about the level of efficiency for the parameters in the estimation. Sample size n = 100, n =200 and n =
400 provides the information that the larger the sample size, the smaller the values of SD and RMSE, it
means that more efficient and accurate the estimator, if there is no relationship between fuzzy error term.
For example in Table 1, for the sample size n = 100, the values of mean of parameters o= -10.041 and
B1 = 1.004, the values of SD = 4.325, RMSE = 4.325 of parameter of By and the values of SD = 0.260,
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RMSE = 0.260 of parameter of B, for the sample size n = 200, the values of mean of parameters o=
-9.831 and B1 = 0.991, the values of SD = 2.964, RMSE = 2.969 of parameter of o and the values of SD
=0.171, RMSE = 0.171 of parameter of Bi, while for the sample size n = 400, the values of mean of
parameters o = -9.969 and p; = 1.001, the values of SD =2.116, RMSE = 2.116 of parameter of By and
the values of SD =0.121, RMSE = 0.121 of parameter of ;.

Result of Mean, SD, RMSE of FMPSSM with n=400 for Bo, 1 and a-cut = 0.2 From Table 1, it
can be shown that for the a-cut = 0.2, with sample size n = 100, where values of po and m are 0 (meaning
that there is no relationship between p and m), so the value becomes small of SD and RMSE for parameter
of Bo, the values of SD =4.325, RMSE = 4.325 and for parameter of 3, the values of SD = 0.260, RMSE
=0.260. When the sample size increases and become n = 200, SD and RMSE values for the parameters
Bo and B decreases, i.e. for value of SD =2.964, RMSE = 2.969 of parameter y, and the value of SD =
0.171, RMSE = 0.171 of the parameter ;. When the sample size increases again for n = 400, SD and
RMSE values for the parameters of By and B; is smaller again, that is the values of SD =2.116, RMSE
= 2.116 for parameter of By and the values of SD =0.121, RMSE = 0.121 for parameter of ;. While po
increases to moderate values of 0.5 (moderate correlation between fuzzy error term), then the values of
SD and RMSE becomes larger than when the value of rho = 0 (no error relationship between fuzzy
terms).

Increase in value of po as shown in Table 1 indicates that the greater correlation of fuzzy error
terms between 3§ and ¥, the smaller the value of SD and RMSE. From the above table also illustrates,
that when the value of po and n strong (po and @ = 0.9), then the values of SD and RMSE increased,
compared with the value of which no correlation of po and m are moderate. This shows that the
occurrence of multicollinearity of fuzzy exogenous variables between W, and ¥ " but the value of this

multicollinearity will be corrected by sample size that continues to expand.

Table 1. Mean, SD, RMSE of FMPSSM under normality assumption with
n=100, 200, 400 for Bo, 1 and a-cut = 0.2
BO Bl

Mean SD RMSE | Mean SD RMSE
100 -10.041 4325 | 4.325 | 1.0039 | 0.2598 | 0.260
0.0 200 -9.831 2964 | 2969 | 0.991 | 0.171 | 0.171
400 -9.969 2.116 | 2.116 | 1.001 | 0.121 | 0.121
100 -9.759 6.628 | 6.633 | 0.999 | 0.358 | 0.358
00| 0.5 200 -9.966 4594 | 4594 | 1.011 | 0.265 | 0.265
400 -9.967 3.133 | 3.133 | 0.999 | 0.178 | 0.178
100 -9.773 6.244 | 6.249 | 1.009 | 0.323 | 0.324
0.9 200 -9.861 4.074 | 4.077 | 1.001 | 0.224 | 0.224
400 -9.967 2.835 | 2.835 | 1.007 | 0.159 | 0.159
100 -9.967 4.151 | 4.151 1.017 | 0364 | 0.364
0.0 200 -9.959 2.716 | 2.716 | 1.001 | 0.245 | 0.245
400 -10.079 1.876 | 1.877 | 1.015 | 0.171 | 0.172
100 -9.604 6.036 | 6.049 | 1.002 | 0.532 | 0.532
05| 05 200 -9.876 4.023 | 4.025 | 1.006 | 0.371 | 0.371
400 -9.960 2911 | 2911 1.005 | 0.253 | 0.253
100 -9.690 5.555 | 5.563 | 1.006 | 0.437 | 0.437
0.9 200 -9.785 3.760 | 3.766 | 1.011 | 0.327 | 0.327
400 -10.009 2.553 | 2.553 | 0.997 | 0.227 | 0.227
100 -10.038 | 11.772 | 11.772 | 1.012 | 1.799 | 1.799
0.0 200 -10.149 5.665 | 5.667 | 0.996 | 1.239 | 1.239
400 -9.999 3.345 | 3.345 | 1.010 | 0.880 | 0.880
0.5 100 -9.648 14.229 | 14.233 | 1.024 | 2.522 | 2.522

T Po n

0.9
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200 -9.555 7.524 | 7.537 | 1.057 | 1.816 | 1.817
400 -9.542 4.800 | 4.821 | 1.101 | 1.292 | 1.296
100 -10.032 | 13.081 | 13.081 | 0.900 | 2.364 | 2.366
0.9 200 -10.046 6.554 | 6.554 | 0.957 | 1.505 | 1.506
400 -9.705 4.165 | 4.175 | 0.975 | 1.093 | 1.093

Table 1 shows that the mean of parameters of By and B showed about the consistency information
of the parameter estimator that approaches the true values, while the SD and RMSE provide information
about the level of efficiency for the parameters in the estimation. Sample size n = 100, n =200 and n =
400 provides the information that the larger the sample size, the smaller the values of SD and RMSE, it
means that more efficient and accurate the estimator, if there is no relationship between fuzzy error term.
For example in Table 1, for the sample size n = 100, the values of mean of parameters Bo=-10.0969 and
Bi = 0.9967, the values of SD = 4.6709, RMSE = 4.6719 of parameter of o and the values of SD =
0.2530, RMSE = 0.2530 of parameter of B, for the sample size n =200, the values of mean of parameters
Bo=-9.9669 and B; = 0.9984, the values of SD = 3.0880, RMSE = 3.0882 of parameter of By and the
values of SD=10.1737, RMSE = 0.1737 of parameter of 31, while for the sample size n =400, the values
of mean of parameters fo=-9.9701 and ; = 1.0020, the values of SD = 2.1179, RMSE = 2.1182 of
parameter of Py and the values of SD = 0.1249, RMSE = 0.1249 of parameter of p;.

From Table 1, it can be shown that for the a-cut = 0.2, with sample size n = 100, where values of
po and © are 0 (meaning that there is no relationship between p and =), so the value becomes small of
SD and RMSE for parameter of P, the values of SD =4.6709, RMSE =4.6719 and for parameter of i,
the values of SD = 0.2530, RMSE = 0.2530. When the sample size increases and become n =200, SD
and RMSE values for the parameters Po and B1 decreases, i.e. for value of SD = 3.0880, RMSE = 3.0882
of parameter By, and the value of SD = 0.1737, RMSE = 0.1737 of the parameter ;. When the sample
size increases again for n = 400, SD and RMSE values for the parameters of By and B is smaller again,
that is the values of SD = 2.1179, RMSE = 2.1182 for parameter of By and the values of SD = 0.1249,
RMSE = 0.1249 for parameter of B;. While py increases to moderate values of 0.5 (moderate correlation
between fuzzy error term), then the values of SD and RMSE becomes larger than when the value of rho
=0 (no error relationship between fuzzy terms).

Table 2. Mean, SD, RMSE of FMPSSM under normality assumption with
n=100, 200, 400 for 0, B1 and a-cut =0.4
Bo B
Mean SD RMSE | Mean | SD | RMSE
100 -9.775 | 4.539 | 4.545] 0988 | 0.249 | 0.249
0.0 | 200 -9911 | 3.191| 3.193 ] 0.999 | 0.180 | 0.180
400 | -10.085| 2.071 | 2.073 | 1.003 | 0.121 | 0.121
100 -9.515| 6.681 | 6.698 | 0.982 | 0.386 | 0.386
00| 0.5 | 200 | -10.077 | 4.530 | 4.530 | 1.006 | 0.259 | 0.259
400 | -10.076 | 3.225| 3.226 | 0.997 [ 0.180 | 0.180
100 -9.978 | 5.893 | 5.893 | 1.005 | 0.322 | 0.322
09 | 200 -9.630 | 4.182 | 4.199 | 0.991 | 0.230 | 0.231
400 -9.972 | 2.865| 2.865] 1.003 | 0.157 | 0.157
100 | -10.108 | 4.383 | 4.385| 1.000 | 0.363 | 0.363
0.0 | 200 | -10.065| 2.685| 2.686 | 1.006 | 0.256 | 0.256
400 -9.924 | 1.787 | 1.789 ] 0.99510.174 | 0.174
0.5 100 | -10.071 | 6.140 | 6.140 | 1.001 | 0.539 | 0.539
0.5 | 200 -9.872 | 4.042 | 4.044 | 0998 | 0.365 | 0.365
400 | -10.014 | 2.850 | 2.851| 0.997 | 0.252 | 0.252
0.9 100 -9.730 | 5.379 | 5386 | 0.995]0.449 | 0.449

T Po n
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200 -10.037 | 3.785 | 3.785 ] 0.990 | 0.311 0.311
400 -10.065 | 2.513 | 2.514 | 1.008 | 0.222 | 0.222
100 -10.267 | 10.585 | 10.589 | 1.011 | 1.855 1.855
0.0 200 -9.653 | 5499 | 5.509 | 1.066 | 1.217 1.219
400 -10.024 | 3.381 3381 | 0978 | 0.884 | 0.884
100 -9.198 | 13.551 | 13.575| 0.982 | 2.595 | 2.595
09| 05 200 -9.931 | 9.042| 9.043 | 0.945 | 1.868 1.869
400 -10.145 | 4712 | 4714 | 0946 | 1.278 1.279
100 -9.866 | 11.909 | 11.910 | 1.036 | 2.252 | 2.252
0.9 200 9313 | 7.034 | 7.067 | 1.121 | 1.593 1.598
400 -10.096 | 4.100 | 4.101 | 0.946 | 1.109 1.110
Table 3. Mean, SD, RMSE of FMPSSM under normality assumption with
n=100, 200, 400 for B0, B1 and a-cut =0.6
Bo B1
e " Mean SD | RMSE | Mean | SD | RMSE
100 -9.961 4.339 4.340 1.000 | 0.253 0.253
0.0 200 -9.960 3.148 3.148 1.010 | 0.180 0.181
400 -9.922 2.042 2.043 1.000 | 0.123 0.123
100 -9.944 6.614 6.614 | 1.003 | 0.369 0.369
0.0 0.5 200 -10.224 4.475 4481 1.012 | 0.254 0.255
400 -1.000 3.051 3.051 0997 | 0.175 0.175
100 -9.782 6.230 6.233 1.001 | 0.328 0.328
0.9 200 -9.998 3.980 3.980 | 0.996 | 0.222 0.222
400 -9.915 2.735 2.736 | 0.994 | 0.161 0.161
100 -10.112 3.875 3.876 1.005 | 0.362 0.362
0.0 200 -10.066 2.675 2.676 | 0.985 | 0.251 0.251
400 -9.901 1.881 1.884 | 0.993 | 0.178 0.178
100 -9.858 5.986 5.987 | 0.996 | 0.556 0.556
0.5 0.5 200 -9.816 4018 4.022 1.000 | 0.358 0.358
400 -10.060 2.735 2.736 | 0.998 | 0.260 0.260
100 -9.599 5.601 5.615 1.011 | 0.440 0.440
0.9 200 -9.848 3.804 3.807 | 0.996 | 0.298 0.298
400 -9.888 2.564 2.566 | 0.989 | 0.217 0.217
100 -10.226 | 11.238 11.241 0.959 | 1.761 1.761
0.0 200 -10.105 5.645 5.646 | 0.967 | 1.293 1.293
400 -10.091 3.203 3.205 1.023 | 0.851 0.851
100 -10.206 | 13.940 13.942 | 0.923 | 2.572 2.573
0.9 0.5 200 -9.901 8.333 8.333 1.026 | 1.829 1.829
400 -10.052 5.030 5.030 | 0.902 | 1.331 1.335
100 -10.008 | 13.863 13.863 | 0.946 | 2.307 2.307
09 200 -10.068 6.653 6.653 | 0929 | 1.581 1.583
400 -9.852 4.309 4311 1.030 | 1.142 1.142

Table 4. Mean, SD, RMSE of FMPSSM under normality assumption with

n=100, 200, 400 for B0, B1 and a-cut =0.8

x P n Bo B1
Mean SD RMSE | Mean | SD | RMSE
100 -10.005 | 4.430 | 4.430 | 0.995 | 0.254 0.254
00 | 0.0 | 200 -10.063 | 3.007 3.008 | 0.998 | 0.180 0.180
400 -9.995| 2.099 | 2.099 | 1.004 | 0.130 0.130
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100 -9.662 | 6.554 | 6.563 | 0.987 | 0.366 | 0.366
0.5 | 200 -9.887 | 4.490 | 4.491 ] 0.999 | 0.266 | 0.266
400 -9.815 | 3.134 ] 3.139] 0.999 | 0.181 | 0.181
100 -9.869 | 5954 | 5956 | 1.018 ] 0.326 | 0.327
0.9 | 200 -9.884 | 4.202 | 4.204 ] 1.003 | 0.222 | 0.222
400 -10.172 | 2719 | 2.725| 1.006 | 0.153 | 0.153
100 -9.886 | 3.999 | 4.000 | 0.996 | 0.356 | 0.356
0.0 | 200 -10.121 | 2.758 | 2.761 | 0.991 | 0.245 | 0.246
400 -9.969 | 1.883 | 1.884 | 1.007 | 0.176 | 0.176
100 -9.803 | 6.135] 6.138 | 0.996 | 0.523 | 0.523
0.5 ] 0.5 [ 200 -10.068 | 4.029 | 4.030 | 0.996 | 0.369 | 0.369
400 -10.062 | 2.766 | 2.766 | 0.988 | 0.251 | 0.251
100 -9.766 | 5.583 | 5.588 | 1.022 | 0.451 | 0.452
0.9 | 200 -9.795 | 3.692 | 3.698 | 0.985]0.316 | 0.316
400 -9.902 | 2.486 | 2.488 | 0.998 | 0.214 | 0.214
100 -10.102 | 10.428 | 10.429 | 0.995 | 1.805 | 1.805
0.0 | 200 -9.960 | 5367 | 5367 | 1.039 | 1.280 | 1.281
400 -10.048 | 3.378 | 3.378 | 0.984 | 0916 | 0.916
100 -9.112 | 14.978 | 15.005 | 1.017 | 2.707 | 2.708
0.9 | 0.5 [ 200 -9376 | 7.830 | 7.855] 1.076 | 1.823 | 1.825
400 -10.149 | 5.046 | 5.048 | 0.926 | 1.301 1.303
100 -9.177 | 14.470 | 14493 | 1.058 | 2.217 | 2.217
0.9 | 200 -9.660 | 6942 | 6.950 | 1.012 | 1.631 1.631
400 -9.832 | 4.101 | 4.104] 1.015]1.093 | 1.093

The consistency for FMPSSM and FMSPSSM has been discussed. The effect of the correlation
of variables X, and W, then the effect of the correlation of error terms U, and y, are then observed.

The FMSPSSM has used the bandwidth by the Powell estimator. The effects of bandwidth changes are
studied and researched, and later observed whether it is consistent or not. Table 1 to Table 4 are
calculation of FMPSSM for Mean, SD, RMSE under normality assumption, The values of SD and
RMSE decreased with increased sample size, and also decreases with increasing values of a-cut.

6. Conclusion

To reduce the problem of uncertainty that exists in the parametric sample selection models, then created
a fuzzy approach. fuzzy concept that used for modified of the parametric sample selection models
provides an alternative for the handle to the problem when the model involves the characteristic
vagueness, uncertainty and ambiguity. Result of the Parametric Sample Selection Models using a fuzzy
approach shows that the larger the sample size, the smaller the values of SD and RMSE, it means that the
more efficient and accurate the estimator, then the greater the value of a-cut, the smaller the values of SD
and RMSE, and the more efficient and accurate.
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