
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042126

IOP Publishing

doi:10.1088/1757-899X/452/4/042126

1

Research and Implementation of OLAP System Based on
Cloud Computing Platform

Guangxin Zhua, Haiyang Chenb, Mingjie Xuc, Jun Yud, Yang Linge, Lin Wangf
and Zhu Meig
State Grid Electric Power Research Institute (SGEPRI) Nanjing, China

azhuguangxin@sgepri.sgcc.com.cn, bchenhaiyang@sgepri.sgcc.com.cn,
cxumingjie@sgepri.sgcc.com.cn, dyujun@sgepri.sgcc.com.cn, e842587420@qq.com,
fwanglin18@sgepri.sgcc.com.cn, gmeizhu2016@aliyun.com

Abstract. The advent of cloud computing addresses perfectly the problem of
processing mass data. To further promote the development of our Geography
information technology, cloud computing can be used to construct the system of the
Geography environment information service application framework. It can also
improve reusability and sharing of the information of Geography resources and
extendibility of application system. In this paper, an OLAP system based on cloud
computing platforms has been created referring to national welfare projects of ocean.
The system provides its users multidimensional views, through which users can, from
diverse angles and different levels, observe and study the data and comprehend them
in depth.

1. Introduction
After years of construction, the State Gird has built a large number of professional geographical
environment information about electric power databases, and built a number of information systems
used for geographically diverse services. In order to further develop the effectiveness of the geographic
information resource sharing platform that has been established in digital geography, build a geographic
environment information integrated service application framework system, and build a low-cost test and
operation environment that supports geographic environment information services, while improving the
reusability and sharing of geographic resource information and the scalability of the application system,
the development and application of cloud computing and cloud service technologies will provide end
users with on-demand services through a standard model. The service has the advantages of saving
investment, improving business support capability, improving operation and maintenance efficiency,
reducing investment risk and decision risk, and green energy conservation.

2. System Overview
The overall framework of the OLAP System based on cloud computing platform implemented in this
paper is shown in Figure 1. The system architecture is mainly divided into the application layer, OLAP
engine layer [1] and storage layer. The application layer communicates with the OLAP engine layer
using the HTTP protocol and the XML response. The OLAP engine layer is implemented by the open

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042126

IOP Publishing

doi:10.1088/1757-899X/452/4/042126

2

source OLAP engine Mondrian, and uses the open source MDX parser to parse the MDX statement into
a HiveQL statement, while providing a JDBC interface to communicate with Hive.

1) Application layer: The application layer is implemented by JPivot. JPivot's tag library can render
various tags of OLAP operations, enabling users to perform typical OLAP operations, such as drilling,
down, rotating and slicing, and provide multi-dimensional visual display of query results, as well as
common functions such as report conversion and printing.

2) OLAP engine layer: OLAP engine layer mainly involves two parts - metadata management
Schema, OLAP engine Mondrian. The metadata management part is the mapping of the management
database Hive to the multidimensional model, which is implemented by Schema file definition.
Specifically, user can write a schema file to define the analysis topic, dimensions, metrics, calculation
members, etc. of the multidimensional analysis dataset. The OLAP engine is responsible for building
the cube from the schema file and getting the corresponding data from the database Hive so that the
data is stored in multiple dimensions.

Hive/MapReduce

HDFS

OLAP Engine

Metadata
Management

 DIsplay
Result

OLAP Query
Print
Report

Cube

…… Application
Layer

OLAP Engine
Layer

Storage Layer

Generate
Reports

JDBC

MDX
Statement

Figure 1. The overall structure of the online analytical processing system based on
cloud computing platform

3) Storage layer: The storage layer runs in the Hadoop cluster. When the upper layer passes the

aggregate load request or the member load request, the SQL generator HiveDialect generates the
HiveQL statement of the column. The database Hive converts the HiveQL statement into a
MapReduce job and submits it to the Hadoop platform computing tool for calculation. By calling
Hive's JDBC interface, the system gets the data available for analysis and presentation and returns it to
the OLAP engine layer to create a multidimensional model. All data of Hive is stored in the distributed
file system HDFS.

3. Design and Implementation of System

3.1. Design and Implementation of the Storage Layer
The storage layer of the system is composed of the data warehouse [2-6] Hive of the cloud platform.
The OLAP engine accesses the Hive data source by calling the JDBC interface to obtain the data to be

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042126

IOP Publishing

doi:10.1088/1757-899X/452/4/042126

3

analyzed. Because the SQL statement generated by the OLAP engine Mondrian is not compatible with
Hive, the system implements a dialect design for Hive, which implements Mondrian's reading of data in
the Hive data source by adding the HiveDialect class, which provides a data foundation for the next
step in OLAP analysis.

Multidimensional
Mode Manager

XML Parser

Multidimensional
Model

Evaluation
Procedure

Member Loading

SQL Generator
Dialect

Data Warehouse/
Database

JDBC

Schema Pool

N

Y

Start

XML File

Exist in the Schema
buffer pool

End

Figure 2. Process of multidimensional model mapping

Mondrian is an OLAP engine written in Java that executes queries through the MDX language,
reads data from a data warehouse or database, and presents the results of the query in a
multidimensional form through the Java API.Mondrian's storage tier is at the bottom of its structure,
which is implemented by the database system. Mondrian stores the data used in the analysis in the
database, defines the multidimensional data model through the schema file, and uses the JDBC
interface to implement the mapping between the physical data in the database and the
multidimensional data model. Figure 2 shows the specific flow chart of the mapping. First, the
multidimensional schema manager loads the multidimensional schema file through the XML parser to
generate a multidimensional model. The dimension manager then initializes the evaluation function
and loads the specific dimensions in the generated multidimensional model. If the member is already
in the multidimensional data pool, load it directly. If not, the system will map with the columns in the
database to obtain the members of the dimension. Through the SQL generator Dialect class, JDBC
will be used to load the columns in the database into the multidimensional model.

It can be seen that Mondrian does not really store data, but only stores the mapping between
physical data and multidimensional data models. Mondrian uses ROLAP storage, and the data uses a
star schema or a snowflake schema in the cube. Usually, the star schema is used. There is only one fact
table in this structure, so the relationship between the dimension table and the fact table is through the

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042126

IOP Publishing

doi:10.1088/1757-899X/452/4/042126

4

foreign key. The storage mode of the data table in the corresponding database should also be a primary
table associated with other tables through foreign keys.

Mondrian runs on most databases with a JDBC interface, and it provides developers with a
standardized interface called Dialect to support operations on new databases [7-12]. So we can achieve
Mondrian compatibility with Hive by writing a new dialect HiveDialect. The structure diagram of the
Hive-based storage layer is shown in Figure 3. When creating a cube to load a dimension member or
requesting a unit to perform an aggregation operation, the system needs to pass the datasource
parameter to the SQL generator, the HiveDialect class converts the query statement into a HiveQL
statement, and reads the data in the Hive through the JDBC interface. And return to the dimension
manager or the aggregation manager to complete the member loading or aggregation loading process.
Since Mondrian provides a common dialect of database based on JDBC connection and management
metadata, we only need to redevelop this set of common dialects and convert it into HiveQL dialect to
meet Mondrian's support for Hive.

Hive

JDBC

HiveDialect

SQL Generator

Member
Loading

Dimension
Manager

Aggregate
Loading

Aggregation
Manager

Cache
Aggregation

JDBC
JDBC

OLAP Engine
Layer

Figure 3. Structure of the Hive-based storage layer

3.2. Design and Implementation of OLAP Engine Layer
The OLAP engine layer of this system is implemented by the open source project Mondrian [13-15],
which is mainly composed of Schema manager, session manager, aggregation manager and dimension
manager. Through the parsing of the multidimensional model XML file, the mapping of the columns in
the Hive to the corresponding members in the multidimensional model is completed, and the cube is
created. Then through the parsing of the MDX query statement, the data is processed accordingly and
the result set is returned to the upper application.

The OLAP engine layer is mainly implemented by Mondrian. The main architecture of the OLAP
engine layer is shown in Figure 4. The OLAP engine layer is mainly composed of a Schema manager,
a session manager, an aggregation manager, and a dimension manager.

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042126

IOP Publishing

doi:10.1088/1757-899X/452/4/042126

5

Storage Layer

Cube

Schema Loader

XML Parser

Schema Manager

Connector MDX Parser
Evaluation
Procedure

MDX

Member
Request

Dimension
Manager

Unit Request

Aggregation
Manager

Session Manager

ResultSetSchema
XML File

Method
Table

Cache
Aggregation

Member
Parameter

Figure 4. Architecture of OLAP engine layer

The session manager mainly accepts MDX queries, parses MDX queries, and returns query results
to the application layer [16]. A query first calculates the coordinate axes and then calculates the value
of each cell. In terms of efficiency, the query calculation is a collection of unit data obtained from the
aggregation manager in batches. The Schema Manager is mainly related to initialization, completes
the construction of the cache pool and the generation of the multidimensional model. The
multidimensional model schema file Schema defines the analysis topic, dimensions, metrics,
calculation members, etc. of the multidimensional analysis data set. The cube is then built according to
the schema file schema, and the data obtained from the storage layer is stored in a multidimensional
form. The aggregation manager implements the aggregation mechanism, mainly the management of
the OLAP cache, which belongs to the performance optimization part. The dimension manager mainly
implements the mapping of dimensions in the multidimensional model and columns in the Hive
database. The loading capabilities of the Dimension Manager and Aggregation Manager are
implemented in the storage tier.

3.3. Design and Implementation of Application Layer
The application layer of the system provides users with a good user image interface, and users can
perform typical OLAP operations, printing and conversion into EXCEL forms and other common
functions. The user graphical interface of the system is a web page, including html tags and jsp tags.
Using the custom JSP tag library JPivot, the JSP tag library is used to provide related buttons and data
presentation for performing OLAP operations, including image presentation and table presentation, and
connection to the underlying data model, which supports JDBC access to the data source.

The user sends an MDX request from the browser. After receiving the request, the application layer
server calls the relevant program to pass to the OLAP engine layer and the storage layer, and executes
the query in the relevant data source. After the query is completed, the query result set is returned to
the application layer, organized and rendered according to the OLAP model of the application layer
JPivot, and finally output to the WEB page. The interaction between the application layer and the
lower layer is mainly achieved through the custom tag library JPivot's MondrianQuery tag. The main
task of the tag is to let Mondrian execute the specified query. Connect Mondrian to the specified
database by getting parameters such as JDBC, URL, Schema, and user-defined MDX queries. The
MondrianQuery tag is implemented by the MondrianOLAPModelTag class, which instantiates the
MondrianModel class, along with all extensions, and places the extension as an internal property in the
MondrianModel and then in the proxy (OlapModelProxy). The instantiation of MondrianModel can

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042126

IOP Publishing

doi:10.1088/1757-899X/452/4/042126

6

get the metadata needed for MDX query; and each extension is an operation for the user to access the
page, such as reels, slices and dicing.

Figure 5. Related Class diagram of MondrianModel

The MondrianModel class is the key class that implements the interaction between JPivot and
Mondrian. Figure 5 shows the class diagram associated with MondrianModel, which includes a
Mondrian connection, query adapter, and query results. The query adapter adapts the Mondrian query
object to the JPivot component, which parses the MDX statement into the components that Jpivot
wants to expose and manipulate.

The results of the application layer visualization display mainly through the JPivot tag library to
render the query result set, generate OLAP analysis charts, and can provide users with typical OLAP
navigation, perform drill-down, slice and dicing operations.

Figure 6 shows the execution flow of the results visualization.First, the application layer sends an
MDX request to the OLAP engine layer. After the OLAP engine layer executes the MDX query, the
query result set is returned to the application layer. The result set is then organized according to the
OLAP model of JPivot and placed in the session. Process the Table tag, construct the report control,
associate the object saved in the session with the report control and the RequestFilter in the previous
step, and then put it into the session. The labels of controls such as Toolbar and Navigator are handled
in the same way. Process each RenderTag, get the navigation object from the session, and generate the
xml. Use xsl to convert the Navigator's xml format to html format and output it to the interface via
Response, completing the rendering process. Then generate the corresponding UI control, output to the
html client and display the data. At this point, an http request ends. The user can perform multiple
operations, and the system ensures the continuity of multiple operations between the user and the
system through the session mechanism, and also ensures that multiple users can simultaneously access
the system without interference.

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042126

IOP Publishing

doi:10.1088/1757-899X/452/4/042126

7

Start

User makes a URL
request

Execute queries using
Mondrian

Generate controls and
output to the client

Reference xsl to
convert the control's

xml to html

Handling Toolbar, Navigator
and other controls, the

process is similar to TableTag

Process QueryTag, build
OLAPModel, QueryAdapter,
initialize and put into

Session

Get the control object
from the Session,
generate the xml

End

Figure 6. Process of Results Visualization

4. Conclusion
This paper implements an OLAP system based on cloud platform technology, and carries out secondary
development of the OLAP engine used in the system, and has made some improvements. According to
the characteristics of MapReduce programming model, the OSRed-based parallel algorithm based on
MapReduce is proposed and some research and experiments are done. This paper starts from the
research background of the project and explains the source of the project. Then, according to the project
requirements, an analysis of the existing OLAP system is made, pointing out that the existing system is
worthy of reference and deficiencies, and finally the research work and research purposes of this paper
are determined.

Acknowledgments
This work was financially supported by the State Grid Corporation of Science and Technology (WBS
number: 521104170019).

References
[1] Nadim W.Alkharouf, D.Curtis Jamison, Benjamin F. Mathhews. Online Analytical Processing

(OLAP): A fast and effective data mining tool for gene expression databases [J], Journal of
Biomedicine and Biotechnology, 2005, 2005 (2): 181-188.

[2] Golfarelli M, Rizzi S. Data warehouse design: Modern principles and methodologies [M],
McGraw-Hill, 2009, 87-88.

[3] Inmon W H. Building the data warehouse [M], USA: John wiley & sons, 2005, 102-104.

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042126

IOP Publishing

doi:10.1088/1757-899X/452/4/042126

8

[4] Bialecki A, Cafarella M, Cutting D, et al. Hadoop: a framework for running applications on
large clusters built of commodity hardware [J], Wiki at http://lucene. apache. org/hadoop,
2005, 11.

[5] Thusoo A, Sarma J S, Jain N, et al. Hive: a warehousing solution over a map-reduce framework
[J], Proceedings of the VLDB Endowment, 2009, 2 (2): 1626-1629.

[6] Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters [A], In the
Proceedings of the 6th Symposium on Operating System Design and Implementation [C],
2004, 137-150.

[7] Chu C, Kim S K, Lin Y A, et al. Map-reduce for machine learning on multicore [J], Advances
in neural information processing systems, 2007, 19: 281.

[8] Chen k, Zheng WM. Cloud computing: System instances and current research [J], Journal of
Software, 2009, 2009: 1337-1348.

[9] Gates A F, Natkovich O, Chopra S, et al. Building a high-level dataflow system on top of Map-
Reduce: the Pig experience [J], Proceedings of the VLDB Endowment, 2009, 2 (2): 1414-
1425.

[10] Thusoo A, Shao Z, Anthony S, et al. Data warehousing and analytics infrastructure at facebook
[A], Proceedings of the 2010 ACM SIGMOD International Conference on Management of
data [C], 2010, 1013-1020.

[11] ParkB K, Han H, Song IY. XML-OLAP: A multidimensional analysis framework for XML
warehouses [M], Springer Berlin Heidelberg: Data Warehousing and Knowledge Discovery,
2005, 32-42.

[12] Thusoo A, Sarma J S, Jain N, et al. Hive-a petabyte scale data warehouse using hadoop [A],
Data Engineering (ICDE), 2010 IEEE 26th International Conference on [C], 2010, 996-1005.

[13] Vieira M, Madeira H. A dependability benchmark for OLTP application environments [A],
Proceedings of the 29th international conference on Very large data bases-Volume 29 [C],
2003, 742-753.

[14] Thomsen E. OLAP solutions: building multidimensional information systems [M]. Wiley, 2002,
210-213.

[15] Eric Thomsen, George Spofford. Microsoft OLAP Solutions [M], USA:Wiley Computer
Publishing, 1999, 67-69.

[16] Whitehorn M, Zare R, Pazusmansky M. Problem solving for MDX for SQL Server 2005 [J],
2007 (14):16-17.

