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Abstract. In this paper, we deal with a three-crane integrated scheduling problem arising 
in a finery shop of an iron and steel making enterprise. It is commonly occurred in every 
large iron and steel company. The main objective of this process is to determine the 
sequence of loading operations so that the makespan of all required refined melted steel 
in ladles, that is, the latest finery completion time among all ladles of the melted steel, 
is minimized. By exploring the problem structure, an effective heuristic algorithm is 
designed to solve the problem. We prove that the worst case performance of the heuristic 
algorithm is 5/3. The results show that the proposed heuristic algorithm is capable of 
generating good quality solutions. 

1.  Introduction 
Iron and steel production is a complicated multistage process that mainly consists of iron making, steel 
making, and refining stages, where refining processing is the most basically used production mode. A 
detailed description of various production processes in integrated steel production can be found in Tang 
et al. (2001). Our problems arise in refining process which is an important subsystem and refining 
process plays a very important role in modern steel plant. In refining process, the melted steel in each 
ladle is transported firstly by trolleys and then by parallel cranes mounted on a shared tracks for loading 
(or unloading) ladles onto (or from) refining furnaces (shorted as RFs) (see Fig. 1). The whole process 
is considered as a loaded move for a crane. After the crane loads a ladle onto a RF, the crane moves 
empty ladle to trolley to perform the next loaded move. Once the melted steel in the ladle has been 
refined completed, a crane unloads the ladle from the RF to a trolley. The crane moves along the track 
over the area while its pickup device (hoist) can move along the crane bridge. In this way the hoist of 
the crane can reach any position in the area.  The cranes work synchronously and each crane performs 
at most one ladle at any time. It is strictly forbidden for any two cranes to cross each other during steel 
refining process. 

In practice, cranes are scarce resource in any iron and steel factory, usually the area in the refining 
shop is served by two or three bridge cranes as illustrated in Figure 1. As shown in Fig.1, there are five 
RFs as an example in line for finery melted steel. More precisely, when one crane is performing an 
operation with a RF, the other crane to the left side of the current crane cannot pass the RF location. 
That is, cranes scheduling is subject to non-interference constraint. In particular, the scheduling of three 
cranes significantly influences the completion time of steelmaking process. The objective of this 
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research is to determine the sequence of loading operations so that the makespan of all required refined 
melted steel in ladles, that is, the latest finery completion time among all ladles of the melted steel, is 
minimized. 

 

 

Figure 1. Layout with three cranes in a refining shop 
 
Unlike general production scheduling in the machinery industry, our crane scheduling problem have 

to meet the special requirements of the steel production process. Most of the literature on crane 
scheduling received a great deal of attention focused on container terminal. This problem was first 
introduced by Daganzo (1989) and has been proved to be NP-complete even minimising the makespan 
of one single container vessel (Zhu and Lim, 2006; Lim, Rodrigues, and Xu (2007) Lee et al., 2008). 
Representative recent paper about some complexity results on crane scheduling see Liu et al. (2016). 
Multiple-crane scheduling problems studied in most existing papers mainly focus on two-crane case 
(Briskorn et al. (2016)). Few papers have considered three-crane scheduling problem. And, the non-
crossing constraints were first incorporated by Kim and Park (2004), where cranes cannot cross over 
each other because they are on the same track. For an arbitrary number of cranes, several 2-
approximation algorithms have been proposed in the literature (Lee et al., 2007; Lim et al., 2004b; 2007). 
Zhang et al. (2017) improved this bound and presented an approximation algorithm with a worst case 
ratio 2−2/m+1<2 for any m cranes. 

So far most of these papers only consider the time of loading and unloading, ignore the travel time 
of a crane. The problem we consider is scheduling three cranes without ignoring crane travelling time 
and with non-interference constraint case. Moreover, from the perspective of crane operators, it is 
required to adopt simple and easily implemented operation methods for practical steel production. 

2.  Problem description 
Throughout the paper, the makespan of a given number of ladles is defined as the last refined completed 
ladle to be unloaded from its furnace to the trolley. We study the scheduling of cranes with non-crossing 
constraints to minimize the makespan of all required melted steel in ladles. There are L  ladles waiting 
to be refined on a trolley. In the rest of the paper we may refer to a position of the trolley as the initial 
position of these ladles, whichever is more convenient. Suppose that there are F  RFs from left to right 
according their position.  Since the position of each furnace and ladle are known, the distance between 
any two positions can be calculated in advance. Only one furnace can handle one ladle till completion. 
For convenience of expression, the position of the trolley is also the final position of all the ladles. 

Knowing that the studied problem is NP-hard we also know that it will probably not be possible to 
solve instances of realistic size by an exact procedure in-acceptable time. For this reason it is appropriate 
to use a heuristic, which will not necessarily find an optimal solution, but at least a reasonable one in 
acceptable time. Here we introduce a heuristic algorithm. In the following section, we propose a 5/3-
approximation heuristic algorithm. The algorithm divided L  ladles from the leftmost to the rightmost 
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into F  subsets, and again assigns these subsets into three pieces, that is, assign one piece to one crane 
in the corresponding position. 

3.  Heuristic algorithm and its worst case analysis 
Step 1. Form a list of all ladles from left to right, and evenly divided the list into three pieces, cut out 

the first one third piece. 
Step 2. The crossover RF (s), if any, belongs to either the first piece or the remaining list, according 

to which part occupies its majority. Ties are broken by assigning the hold to the remaining list. Assign 
the first piece to the most left crane. 

Step 3. Divide the remaining list evenly into two pieces. 
Step 4. The crossover RF (s), if any, belongs to the piece which occupies its majority, and ties are 

broken by assigning the hold to the last piece. Assign the second, i.e., the middle piece to the crane in 
the middle position, and the third piece to the most right crane. 

In this algorithm, denote by 1c  the first crossover RF (s) as well as the number of  ladles within it. 

We use a  to indicate the total number of ladles in the first piece, excluding the crossover RF (s) 1c  if it 

belongs to the first piece. Let a  be the number of RF (s) in the list excluding the first piece. 
 

1a c a L                                                                    (1) 

 
Otherwise if 1c  belongs to the second piece, then 

 
a a L                                                                     (2) 

 
According to step 3, the remaining list of a   RF(s) is divided into two pieces. Let 2c  denote the 

second crossover RF(s) as well as the number of ladles within it. Denote by b  and d  the total number 
of ladles in the second and the third pieces, respectively, excluding those in 1c  and 2c  crossover RF(s). 
According equations (1), if 1c  belongs to the first piece, then 2b c d a   . Otherwise if 1c  belongs to 
the second piece, then 1 2c b c d a    . 

In either case, 
 

1 2a c b c d L                                                               (3) 

 
For the case where 1c  belongs to the first piece, combining equations (1) and the fact 1 3a c H  , 

we have 
 
2 3a H                                                                     (4) 
 

For demonstrate the worst case of our heuristic algorithm, let max ( )AC   be the value of the makespan 

for a schedule A  generated by our algorithm A  and *
max ( )C   be the value of the makespan for an 

optimal schedule denoted by * . Algorithm A  is said to provide the worst case performance guarantee 
  if for any problem instance *

max max( ) ( )AC C   . 
Theorem 1. For three-crane scheduling problem, our heuristic algorithm is 5/3-approximation. 
Proof. A straightforward conclusion we get is *

max 1 2( ) max{ 3,  ,  }C H c c  . If a special case where 1c  
the first crossover RF(s) does not exist, our problem reduces to the two-crane problem. For another 
special case where 2c  does not exist, i. e, 2 0c  , if 1c  is assigned to the first piece, then max 1( )AC a c    
and we have 
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max 1 1 1
*

1 1max

( ) 2 2

max{ 3,  } max{ 3,  }( )

AC a c a c c

H c H cC




  
   

1

1

3 2 3 5
2 3max{ 3,  }

H c

H c


    

We discuss the following two cases: 
Case 1. If 1c  belongs to the first piece, and then 2a b c d   . According to step 2 of our algorithm, 

we have 3a H  and 1 3 3a c H H a    . Hence 
 

12 2 3a c H                                                                  (5) 
 

Case 1.1 2c   belongs to the second piece, according to step 4 of our algorithm, we have

2 2 2b c a a b    . Hence, 
 

22b c a                                                                     (6) 

 
and max 1 2( ) max{ , }AC a c b c    . 

1) When 1 2a c b c   , we have max 1( )AC a c    and 

max 1 1 1
*

1 1max

( ) 2 2

max{ 3,  } max{ 3,  }( )

AC a c a c c

H c H cC




  
   

1

1

3 2 3 5
2 3max{ 3,  }

H c

H c


    

2) When 1 2a c b c   , we have max 2( )AC b c   . In this case, due to (4) and (6), we have

22 2 3b c H  . In both cases of 2 3c H  and 2 3c H , we have *
max max( ) ( ) 5 3AC C   . 

Case 1.2 2c  belongs to the third piece, in this case, max 1 2( ) max{ , }AC a c d c    .  According to to 

step 4 of our algorithm, we have 2 2 2b c a a b    . That is, 
 

2( ) 2b a c                                                                   (7) 
 

Combining equation (7) and the definition of a , we have 
2 2 2( ) 2a b c d a c c d       , that is 22d c a  . Combing (4), we have 22 2 3d c H  . Similarly 

to the case 1.1, and we still have *
max max( ) ( ) 5 3AC C   . 

Case 2. If 1c  belongs to the second piece, and then 1 2a c b c d    . According to step 2 of our 

algorithm, we have 3a H  and 1 3 3a c H H a    . Hence, 
 

13 2a H c                                                                    (8) 
 

Case 2.1 2c  belongs to the second piece, 

According to step 4 of our algorithm, we have 1 2 12 2b c c a a c b      . We have 1 22 2c b c a   , 

together with 1 2a c b c d    , we have 
 

1d b c                                                                       (9) 
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If 1c   and 2c  are the same crossover furnace(s), we have *
max max 1( ) ( )AC C c   , otherwise, since 

3a H  and 1 2d c b c   and max 1 2( )AC a c c L a d       . 
1) When 1 3c H , according to (8) and (9), we have 

max 1 1( ) ( 3 2) ( )AC L a d L H c c b         12 3 2H c   And combining the equation 
*

max 1( )C c   and 1 3c H , we have 

max 1
*

1max

( ) 2 3 2 3 5
2 3( )

AC H c

cC





   . 

2) When 1 3c H , in case of 2 3c H , due to (3) and (8), and together with (9) we have 

1 2 12 ( ) 2 3c b c c b H     , that is, 

1 24 9 2 3 3c b H c b    . 

According to *
max 2( )C c  , 0b  , we have 

max 1 2 2
*

2 2max

( ) 4 9 3 5
3( )

AC c b c H c

c cC




  
   . 

In case of 2 3c H , if 1c a , together with (8), we have 1 2 9c H . According to (8) and (9), 

max 1 1
*

max

( ) ( 3 2) ( )

3 3( )

AC L L c c bL a d

L LC




    
   

12 3 2 5
33

L c b

L

 
   

Otherwise  if 1c a  and according to (8), we have 2 9a H . Since 2c  belongs to the second piece 

and step 4 of our algorithm, that is, 2( ) 2d L a c   . Hence, 

max 2
*

max

( ) ( ) 2

3 3( )

AC L a L a cL a d

L LC




    
   

2 5
32 3

L a c

L

 
   

Case 2.2 2c  belongs to the third piece, 

If 1c  and 2c  are the same crossover furnace(s), that is, 0d  . Since 2c  must be assigned to the second 

but not the third piece according to step 4 of our algorithm, thus, we have *
max max 2( ) ( )AC C c L a     . 

By step 4 of the algorithm, we have 1 2 12 2c b c a a c b      , together with 1 2a c b c d    , 
 

1d b c                                                                    (10) 

 
1) When 1 3c H , according to (8), we have 1 1 1( 3 2) 2a c H c c H     . Thus, 

max 1( ) ( ) 2AC L c a d H      , and 

max
*

max

( ) 2 5
3 3( )

AC H
HC




  . 

2) When 1 3c H , according to (3) and (8), we have 1 22 2 3c b c d H    . Together with (10)，we 
obtain 22 2 2 3d b c d H    , that is, 24 9 2 3d H c  . According to 0b  , we have 

max 2 2
*

2 2max

( ) 4 9 3 5
3max{ 3, } max{ 3, }( )

AC c d H c

H c H cC




 
   . 

4.  Computational experiments 
The algorithms described in previous section were programmed in C# 5.0. All tests were run on an x64 
PC with an Intel Core i7-3770 3.4 GHz CPU and 8,192MBof RAM. The test problems are generated 
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randomly by considering the following parameters: for each instance, the full loaded move time t  
followed a uniform discrete distribution in the range [30, 100]. The empty move time et followed a 
uniform discrete distribution in the range [10, 50]. The number ( L ) of ladles and the number ( F ) of 
furnaces that ranged in [6, 30] and [5, 10], respectively. Now a series of computational experiments are 
conducted to examine the average performance of this algorithm. The quality is measured by its relative 
deviation from the LB, max( ( ) ) /AC LB LB  *100%. The average error ratio (Avg.ER) and the maximum 
error ratio (Max.ER) measured over the derived lower bound of the makespan are used for the 
performance test. 

From Table 1 we can make the following observations: as the problem size or number of furnace and 
ladle increase, the quality of the proposed heuristic solution is quite good, as the Avg. ER is below 21%. 
The proposed heuristic generates optimal solutions for the group of the smallest instances because the 
short move time is negligible relative to the processing time.  The quality of the solution remains steady 
on average when the number of furnaces is not similar to the number of ladles. The average 
computational times for smaller-scale instances are obtained instantaneously. 

 
Table 1. Average optimal gaps of the lower bounds with respect to our heuristic algorithm 

 
 50t  , 20et   80t  , 30et   
 Max.ER Avg.ER Avg.CPU Max.ER Avg.ER Avg. CPU 

F=5 

L=6 15.205 15.036 0.000 16.501 16.228 0.000 
L=10 18.012 17.925 0.000 19.066 18.859 0.000 
L=20 18.123 18.102 0.003 19.152 19.001 0.003 
L=30 18.308 18.220 0.127 19.375 19.203 0.212 

F=8 

L=6 16.312 17.010 0.000 19.032 18.699 0.000 
L=10 18.278 18.019 0.000 19.585 19.116 0.000 
L=20 18.436 18.205 0.005 20.039 20.003 0.008 
L=30 18.579 18.328 0.267 20.404 20.015 0.304 

F=10 

L=6 18.210 17.968 0.000 19.395 19.009 0.000 
L=10 18.306 18.025 0.005 20.310 20.105 0.001 
L=20 18.592 18.269 0.010 20.557 20.277 0.017 
L=30 18.784 18.562 0.561 20.636 20.302 0.810 

5.  Conclusion 
In this paper, we studied the crane scheduling problem in the iron and steel enterprise. The objective 
function is to minimize the latest refined completion time among all ladles of the melted steel. We 
explored the property of the studied problem and proposed a heuristic algorithm.  Further the worst case 
performance of the algorithm is demonstrated as 5/3. The result illustrated that the proposed heuristic 
algorithm can generate robust and acceptable solutions quickly. Future research could investigate an 
improvement of the computation times, which would allow to take into account a higher number of 
cranes. 
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