
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 032055

IOP Publishing

doi:10.1088/1757-899X/452/3/032055

1

 
 
 
 
 
 

Train Energy-Saving Scheme Optimized On Case Intelligence 
with Synthesis-Reasoning Technology in Urban Rail Transit 

Jianyang Li1, a, Hongseng Wu2, b, Benkun Zhu2 
1School of Electrical Engineering and Automation Zhenjiang Institute of Technology 
Zhenjiang, China 
2School of Computer and Information Engineering Hefei University of Technology 
Hefei, China 

alijianyang@sina.com, bHongseng1 @sina.com 

Abstract. Train energy consumption in URT has been attracted much greater concerns 
for it becomes more serious with the large scale operation and expansion of operation 
network. One of the important ways for energy-saving propulsion is to find the 
energy-efficient train speed curve, which is a complicated CSP (constraint satisfaction 
problem) with uncertainty, and cannot be solved effectively with such inconsistent 
constrains. The case intelligent based on CBR (case-based reasoning) is proposed in 
this paper for its problem-solving ability, for which the domain expertise is rich while 
rule knowledge deficient, to construct a flexible system integrated with efficient 
machine learning components and acquire the train operation preferences from the 
former stored cases. The experiments testing on the spot indicates that the system 
performs well in synthesis-reasoning, which can conquer the complexity and 
uncertainty of real problem from both RBR (Rule-based reasoning) and CBR, to 
minimize the energy consumption for train traction with punctuality and safety 
demands. 

1.  Introduction  
The problem of energy consumption in URT becomes more serious along with the large scale operation 
and expansion of operation network, and takes terrible proportion of energy consumption. Through a 
decade development URT has become the mainstream of public transport in most of China large cities 
for green transportation, and more than forty URT lines have been built in Beijing, Shanghai, 
Guangzhou and other cities with a mileage of 5,000 kilometers. Many more electric energies are 
demanding for URT operation, causing most of their tickets income paid for the electricity bills. 
Resulting in high budget deficit from URT operating losses, it was absolutely essential way to reduce 
the energy consumption in each URT, which has caused the most prominent problem from daily 
operations.  

Energy-saving train operation can be formulated as a problem of optimal control, which aims to 
calculate the optimal reference speed profile compromising on all kinds of control parameters, and a 
large number of studies have been carried out from both analytical and numerical methods since1960s. 
[1] Considers the problem of determining an optimal driving strategy in control with a generalized 
equation of motion. [2] Uses the Pontryagin principle to find necessary conditions and shows these 
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conditions yield key equations. [3] Uses the Kuhn–Tucker equations to find key equations that 
determine the optimal switching times. [4] Obtains the optimal solution for the operation of a train on 
a variable grade profile subject to speed restrictions. 

Due to the complexity of the above analytical methods, many researches have constructed large of 
simulating methods on energy-saving, such as dynamic programming, genetic algorithm, fuzzy control, 
artificial neural networks, quadratic sequence planning, ant colony optimization, etc. [5-8]. 
Singaporean scholar uses genetic algorithms to generate inertial control tables to optimize the 
operational control of their MRT system [9, 10], Australia SCG developed their online operation 
guidance system METROMISER, which can calculate the train operation process to optimize driving 
in real-time [11, 12]. 

Researches also shows that the factors affecting train energy consumption mainly include traction 
and braking performance, train weights and speed, metro line parameters, signaling blocking mode 
and train operation mode, which are difficult to obtain the optimal solution due to the complexity of 
the train operating environment along with real-time passenger flow changing. So far, the precise 
calculation of traction and energy consumption is still a difficult task, causing researches either 
simplify the calculating model, or assume running in specific conditions omitting certain constrains. 

From the view of recognition, problem-solving can be used by the traditional Rule-based reasoning 
(RBR), just like what we have described the both researches have done, that is a kind abstract thinking 
of human merely. Experts in the decision-making really uses more imaginative thinking - Case-based 
reasoning (CBR)- to perform analogy model for creative reasoning [13], which is a kind of inferential 
study strategy allowing people to process their reasoning course for  new problem-solving wherever 
they have similar characters. Case-intelligent system based on CBR performs well in weak area full of 
domain expertise but lack knowledge like fault diagnosis, help-desk support, online e-commerce and 
online decision guides, etc. [14]. As many researches have bothered by the real complex constrains on 
the URT train optimized operation, which are more complicated and with inconstant impact-factors, 
here we present the case-intelligent learning to solve such problems.  

2.  Synthesis- Reasoning modeling  

2.1.  Cases Collection  
As we know one URT train is running from the same route station A to B many times a day, about 
which its VOBC (Vehicle on-board Computer) records these propulsion parameters, large amounts of 
propulsion data are stored for long time running; in the meantime this kind of URT trains in the same 
line are also stored huge propulsion data. The big data of the URT train operation implicitly gives many 
empirical knowledge, which are effective to optimized operation but to be difficultly obtained with 
brief knowledge – the running ‘rule’ for the optimal solution accounting for the complexity of the train 
operating environment.  

People often use the analogy reasoning models and assumptions to study new concepts and find 
new knowledge like this: 

Object X has attributes a, b, c, d, e. 
Object B has attributes a, b, c, e.  
It suggests us that B may have similar attributes d. The so-called mapping analog is to compare two 

similar things, searching for their similar relations at a certain level and as a reason to map the 
problem space, through which solves the new issues by appropriate knowledge transformation, and the 
matching methods can be composed by partial similar attributes, partial matching feature, or even by 
interpretable matching. Naturally we can define URT train propulsion cases learning as follows: 

1) Suppose a URT train serials run from station A to station B, each VOBC control the train 
routing and record its real speed curve, S1,S2,…,Sn, from which we can find the best speed curve Si 
with the least energy consumption.  
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2) Another URT train X running from station A to station B, can reuse the best speed curve Si by 
analogy mapping and case adaptation to perform CBR process, for they have the most similar running 
constrains. 

3) Case library collects both kind of running big-data from the same route AB, the one propulsion 
cases is drilling from itself, the others come from the same kind of train, for they have the most similar 
dynamic presentation under the same signal system. 

4) case library can also collects propulsion cases from the similar kinds of train and similar speed 
curve under different route by transfer learning, either from the different kinds of train ideally but not 
mentioned in this paper just now, for the learning is really so time-consuming that cannot meet the 
real-time ATO (Automatic Train Operation) demands. 

2.2.  System Modeling  
In general, CBR system implements four processes such as Retrieve, Reuse, Revise, and Retain, well 
known as the 4R. According to the problem (target case) space, it obtains the similar former cases (base 
case) from the source case library, to deal with the similar circumstances, appropriately adapting to new 
situation for the new problem-solving. The former cases can also be used to evaluate the new issues, 
new statues and programs of problem-solving, and prevent the potential errors in the future. 

Vehicle data base stores primary train parameters, such as Maximum Train Acceleration/Maximum 
Train Service Brake Rate/ Train Length /Max wheel diameter /Min wheel diameter Normal brake 
average decelerate, etc. Line data base stores such Metro Line parameters involving train operations 
like types of switches, state and position/ Permanent Speed Limit / Proximity plates / Axle detection 
point / Minimum radius of plane curves of the guideway /Maximum gradient at vertical sections of 
different guideways/ Wayside Radio Units and Access Points, etc. 

As fig 1 described, analogy in the minds of human beings plays a very important role, for which 
people’s knowledge are gradually built up. The new problem are mapping and compared with the 
original knowledge which have been carried out of case library, and can reason from similar 
knowledge transfer (synthesis reasoning), just like what we have been searching for the running rule of 
the optimal solution. In order to improve the CBR system retrieval efficiency with our synthesis 
reasoning process, the best way is to integrate three organizational strategies, which performs well in 
our system described in paper [15]. 

 

 

Figure 1. The improved system model 
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2.3.  Synthesis Reasoning Technology 
The problem of optimized URT energy-saving operation is a extremely complex CSP, which consists 
of a set of variables V = {V1, ..., Vn}, corresponding to the domain of values r={ r1, r2, ... rm } of each 
variable, and a set of constraints C = {C1, ..., Ck}. As many researches have done, only when we 
should search an assignment for each variable to fit for all constraints, can it get the optimized energy-
saving operation. But each constraint describes a legal combination of a subset of variables with a 
particular fickle value, which is changeable with URT running environment. For example, monitoring 
the train real speed is the most important to train safety protection, when the train spin/ slide, or wheel 
diameter attrition causing by the steel surface humidity, the changing process can’t be a steady with a 
definite value for they must vary from a range. That’s why many researches must simplify the CSP, and 
intelligent simulation performs well for such problem-solving. 

The traditional view of reasoning is a process by its causality (expressed as a ‘rule’- the reasoning 
chain, RBR) to derive the conclusion. But for the real URT train operation, the optimized problem is 
about uncertain and incomplete, for which traditional knowledge processing RBR can only work well 
on the basis of sufficient complete and clear understanding, once the information is missing or blurred, 
its reasoning ability will be drastically reduced. Therefore, the system integrated with RBR and CBR 
is expected to construct our case-intelligent system, to give full play to their advantages, for the naive 
CBR method does not guarantee the good performance of the system efficiency in the real URT 
operation, which needs to be cooperated with RBR where the rule is acquired by machine learning 
(ML) technology. There are many methods to combine CBR and RBR for problem-solving in our 
system, for they have excellent flexibility. 

3.  Experiments and Explanation 

3.1.  Experimental Planning 
To meet the train safety demands is the chief task to process any test on the spot, where the URT train 
operating modes are divided into two general classes: ATC modes - the train is controlled by the ATC 
system, and manual modes - the train is under the control of a driver. Considering many kinds of trains 
running all over the world taken from different signaling systems, their inconsistent Abbreviations and 
Acronyms may confuse us, so we briefly take a look.  

When Mode Selection Switch is in the ATO position, VOBC enters the ATO mode and controls 
the vehicle without driver intervention; CM position (Cab Manual mode) or other ATPM (ATP 
Manual mode) has ATP and IATP protection mode, the train functions of acceleration, coasting, 
deceleration, stopping, and door opening are under the direct manual control of the Train Operator and 
are supervised by the ATP system with the driving information shown on the TOD, so our 
experiments are taken on the spot with CM or ATPM mode.  

our experimental CBR software system is designed in components for easily integrated with many 
ML tools, such as RS and RBF in our experiments. Due to the train RAMS requirements, our software 
cannot be directly  inserted into VOBC system software, so the train energy consume and traction 
force calculating can be only reflected with the position of driver operation handle instead. A digital 
electricity meter is recording the real-time energy consume with a period of 3 seconds, so it can be 
added up for the interval real energy consume to demonstrate our testing results. Thus, each case has 
such attributes: Case={start point, end point, start point speed, end point speed, line conditions, 
passenger flows, Traction Force, etc. }. Summarizing the testing principles as follows: 

Testing on the spot under the real train operation in CM /ATPM mode; 
The position of driver operation handle reacting the traction force; 
A digital electricity meter recording each consume in 3 seconds periodically. 

3.2.  AW0-3 Learning 
Acquiring Characteristic Performance Curve of Traction Force (aw0, aw1, aw2, aw3) is the basic 
requirement for traction computing, for they have a different loads in real train operation involving in 
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traction force directly. So, approximately estimating their weights by four kinds of load conditions as 
table 1 shown ,and get the real curve that each train must perform the four groups testing firstly by 
simulation and then on the spot running.  
 

Table 1. Four exteme weights evaluation of the train 

Statue Number of Passengers weight(t) 
AW0(no load) 0 220 
AW1(full seat) 336 240 

AW2(overload,6men/m2) 1860 331 
AW3(overload,9men/m2) 2592 375 

(Assume each passenger weights 60kg) 
 

According to Newton’s theory, the train acceleration curve must be a straight line under a certain 
load, which is a consistent rule in RBR. But in fact, the real curve isn’t a direct line, even not with a 
simple fitting function, for the train traction force varies depending on different conditions such as 
train speed and load as fig 2 shown. The more troubled problem is there isn’t consistent cooperation 
with load varying, so the train acceleration curve must be plotted under different loads, especially with 
extreme loads- from empty load AW0 to overload AW3.  When they are used for traction calculating, 
interpolating the approximate value is a feasible way from the similar loads. 

 

 

Figure 2. The four groups of traction force in exteme weights 
 

That is a normal and common way for evaluation the URT train speed due to the inconsistent rule, 
from which such RBR system has to just find a approximate value instead. Let’s think over CBR 
system, for each case can be drilled for the rule, the four curves of extreme load can be easily used in 
our CBR system for they stored with cases. Furthermore, each case acquired from the real implicates 
the whole running conditions for the train operating, and later they can be reasoning in CBR system 
cycles in spite of those trouble constraints. 

3.3.  Results with Outlook 
In our experiments, the URT train runs from Station A to Station B about 1300m, whose basic slope 
data and speed limits are shown in fig 3. Considering of the control for energy-saving within a effective 
passenger’s travel speed, the basic rules and application conditions on energy-efficient control of train 
operation are concluded as follows: 

The coasting mode is the key for the train energy-saving control, which is fully used if it is possible. 
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The full power mode is applied when the train needs to run at the maximum accelerated speed 
(from the starting stage and also from a low speed to a high speed) considering of time limitation. 

The full braking mode is mainly applied to the braking deceleration stage before the train stops for 
the time limitation.  

 

 

Figure 3. different running speed curves in three methods 
 

The proposed running curve can be divided into such stages: from start up full power, coasting1, 
(routing full power, coasting2), to end up braking. Depending on train speed and load, the maximum 
train acceleration usually varies; real cases are merged in each running statement for the same routing 
stage, which is classified inML- RS module; RBF is used to find the most similar case for the 
optimized operation in each stage, which at last is changed into a feasible operation method for 
population. 

As table 2 indicates, CBR routing can be used for real URT train operation in 26.92% energy 
reduction ratio, and can meet the time limitation demands. Although GA Simulation has a better 
performance for they can touching the speed limit while real running must have a few speed surplus 
caring about train braking caused by safety problem, in other words that is an idealist value which can 
encourage us promote our methods furthermore. 

 
Table 2. Performance in different operation 

Operation mode Energy consume(kWh) Time(s) 
Punctuality real operation 57.239 84 
GA optimized simulation 32.327 95 

CBR Real testing 41.831 95 

4.  Conclusion 
Many researches have found different ways for URT optimal running, to minimize the energy for 
propulsion from both analytical and numerical methods, and drawn a lots of useful design for industrial 
implementation. The train speed is affected by many inconsistent factors with uncertain constrains, 
which are so complex that researches have to omit some constrains for simplify their model. In order to 
achieve such multiplex tasks under complex environments with complicated operation, our case 
intelligent system has a good flexibility to integrate many components, which can use synthesis 
reasoning technology from both RBR and CBR for problem-solving. The system performs well on the 
spot and indicates that our future work to tune the speed better from system control. 
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