
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042066

IOP Publishing

doi:10.1088/1757-899X/452/4/042066

1

Research on Efficient K_Means Parallel Algorithm Based on
Hadoop Distributed Architecture

Lin Qiana, Lin Wangb, Zhu Meic, Jun Yud, Guangxin Zhue, Debing Songf and
Mingjie Xug

State Grid Electric Power Research Institute (SGEPRI) Nanjing, China

aqianlin@sgepri.sgcc.com.cn, bwanglin18@qianlin@sgepri.sgcc.com.cn,
cmeizhu2016@aliyun.com, dyujun@sgepri.sgcc.com.cn,
ezhuguangxin@sgepri.sgcc.com.cn, fsongdebing@sgepri.sgcc.com.cn,
gxumingjie@sgepri.sgcc.com.cn

Abstract. Focusing on the problems of K-means algorithm that has high time
complexity, slow convergence, lower clustering accuracy, slow operating speed, an
efficient K-means parallel algorithm based on Hadoop system and MapReduce
framework is proposed. Firstly, the algorithm uses K selective sorting algorithm to
improve the sampling efficiency; Secondly, the iterative center is updated by using the
weight replacement policy; finally, the initial center point is obtained based on the
sample pretreatment strategy. Experimental results show that the proposed algorithm
not only has good convergence, accuracy and speedup, but also can improve
performance of the algorithm.

1. Introduction
With the promotion of big data [1] and the emergence of various new applications, the data scale
continues to expand from TB level up to PB level. At the same time, how to correctly analyze and
efficiently mine representative data is the current research trend. Using clustering algorithm for
information classification is an important method of processing these data.

K-means [2] is a common data mining algorithm, but the algorithm cannot meet the increasing data
requirements in a single-machine serial environment, and the results of clustering depends on the
initial value selection. For the shortcomings of the K-means algorithm, the literature [3] combined the
Hadoop distributed platform to parallelize the K-means algorithm and proposed the PK-means
algorithm. To reduce the transmission of intermediate data by designing the Combine function, and to
deal with the problem of insufficient memory when the K-means algorithm processes massive data.
However, the selection of the initial value has not been improved. In [4], the idea of Canopy-Kmeans
algorithm is proposed by using the idea that the center points are as far apart as possible. The problem
of initial value selection dependence is solved, but the central point is easy to fall into local optimum.
On this basis, Ref [5] uses the dichotomy to improve it and proposes the BCkmeans algorithm, it
avoids Canopy local optimal problems, but for the processing of massive data, the cost of center point
selection is higher. Improved with intelligent algorithms, such as ant colony algorithm [6], genetic
algorithm [7-10], etc., these improved algorithms can obtain good convergence. However, although
the above algorithms for initial value improvement can obtain better initial values, the iterative center

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042066

IOP Publishing

doi:10.1088/1757-899X/452/4/042066

2

update uses mean replacement, which is susceptible to singular value points. In addition, these
algorithms are preprocessing of global data. In the face of massive data analysis, the preprocessing
cost is higher, which affects the overall performance of the algorithm.

Considering the above problems in the big data environment, this paper proposes an efficient K-
means parallel algorithm based on MapReduce. The K-selection sorting algorithm is combined with
the MapReduce framework for parallel sampling. The sample data preprocessing strategy is used to
obtain the initial center, and the weight replacement strategy is used to update the iterative center.
Experiments show that the algorithm not only improves the clustering quality, but also improves the
efficiency of the algorithm in the face of massive data processing.

2. K-means algorithm
K-means algorithm is a clustering algorithm based on partition. Set data x {x1 , x2 ,..., xn }, where each
vector xi in the data set represents a data object, and use Euclidean distance to judge the similarity
between data objects. The larger the distance, the smaller the similarity. The Euclidean distance
between data objects is shown in (1):

njnixxyxd m

r jrirji   
1,1)(),(

1

2 (1)

Where m is the data set attribute dimension, xir , xjr are the rth attribute values of the data objects xi ,

xj.
The K-means algorithm is described as follows:
Input: cluster number k and data set x output: k clusters that are iteratively terminated.
Step 1: For the data set x, k data are randomly selected as the initial cluster center.
Step 2: Calculate the Euclidean distance between the data points in the dataset and the k center

points.
Step 3: Assign the data object to the closest cluster category.
Step 4: Find the mean of each cluster to determine a new center point.
Step 5: Determine whether the new and old center points have changed. If they do not change, the

cluster ends. Otherwise, skip to step 2.

3. Efficient K-means parallel algorithm design

3.1. K-means algorithm improvement strategy
(1) K-means algorithm in the single-serial serial environment, in the face of massive data

processing, often due to memory overflow problems cannot be clustered. Therefore, this paper uses
the MapReduce computational model in the Hadoop platform to parallelize the improved K-means
algorithm to adapt it to the processing of massive data.

(2) The selection of the initial value determines the effect of clustering. The selection of the initial
value of the K-mean algorithm is random, resulting in unstable clustering results and poor accuracy.
There are usually two ways to improve the initial value: combining intelligent algorithms with the
method of maximizing the minimum distance. Both improvements are global preprocessing of the data,
and the initial value selection is costly. Therefore, combined with the literature [11], literature [12]
proposed a sample data preprocessing strategy to obtain the initial value. The data set sampling uses
parallel random sampling of 3.1. According to the law of statistical large numbers [13] Bernoulli's law
of large numbers and the central limit theorem, no matter what kind of distribution the whole obeys, as
long as the mathematical expectation and variance exist, the capacity is extracted from it. For a sample
of K, and when K is sufficiently large, tending to be normally distributed, the sample capacity formula
is defined as follows:

222

22






tN

tN (2)

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042066

IOP Publishing

doi:10.1088/1757-899X/452/4/042066

3

The total data set is N, the sample size is K, the error limit is , the probability is t, and the
standard deviation is .

When random sampling is performed in various survey activities, the confidence is usually 0.95
and the probability is 1.96. Therefore, the experiment used a confidence of 0.95 and a probability t of
1.96.The data preprocessing is calculated as follows:




n

i ijijj njddK
1

,...,2,1 (3)

Where K j is the distance between each data point in the sample and other data points, and dij is the

Euclidean distance between the sample data points.
(3) Weight substitution strategy. The K-means algorithm center point iterative update is replaced

by the mean method. This method makes the center point greatly affected by the singular value, and
finally affects the clustering effect. Therefore, the weight substitution strategy is used to update the
center point in the iterative process. Experiments show that this method has better clustering accuracy
than the mean iterative update.

The idea of weight substitution [14]: In the iterative process, a weight is assigned to the data points
in each cluster, the data points near the center point have larger weights, and the distances away from
the center point are smaller. Finally, the data points in each cluster are accumulated to find a new
cluster center, and replaced. The formula is defined as follows:

jh
j

hj
j

j
hj

j
jh

j x
D
d

x
D

d
x

D
d

x
D

d
K 1

)2(
2

2
)1(

1 ...  
 (4)

3.2. Algorithm Description
The K-means optimization algorithm is described as follows:

Input: Cluster number k, data set D with N data objects.
Output: k clusters that meet the minimum distance criteria.
Step 1: Calculate the sample size using equation (2).
Step 2: K Select Sort Parallel Sampling.
Step 3: Sample preprocessing to obtain the initial center point, pre-clustering:
Step 3-1: Calculate the distance dij between each data point in the sample data by using the

MapReduce distributed programming model, and save it in the distance relationship file. The distance
used is measured as the Euclidean distance of the formula (1).

Step 3-2: For the distance relationship file saved in the previous step, calculate the value of using
Equation (3), and select the first K values as the initial center point of the cluster, and save it in the
cluster center file.

Step 3-3: Assign the data points to the cluster to which they belong according to the minimum
distance criteria.

Step 4: Center iterative replacement.
Using the MapReduce distributed programming model, the new center point is calculated using

equation (4) and the old center point is replaced.
Step 5: Data point allocation, iteration terminated.
Step 5-1: Reassign the data points in the data to the cluster to which they belong.
Step 5-2: Calculate whether the new and old center points converge. If it converges, iteratively

terminates. Otherwise, jump to step 4 to recalculate.
The core code for weight distribution is as follows:
(1) KWMapper: map stage assigns each data point to the cluster center nearest to it, performs pre-

clustering, and saves the result in the pre-cluster file.
setup(){center=Cluster center file} for(int I = 0; i<k; i++){
for(int j=0; j<value; dimension; j++){
dis+=Math.pow(center.get(i).get(j)-value.get(j));

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042066

IOP Publishing

doi:10.1088/1757-899X/452/4/042066

4

}
If(dis<min){
min=dis;
Index = center.get(i);
}
Context.write(new Text(Index), new Text(value));
 }
(2) KWReducer: The reduction stage performs weight distribution on the result of pre-clustering.

First, calculate the distance between each data point and the cluster center to which it belongs, and
then assign weights to the data points in each cluster to generate a new center point.

setup(){cluster=Pre-clustered file} for(Text val:value){
for(int j=0;j<val.dimension;j++){
sum += Math. pow((key.get(j)-val.get(j)),2); sum=Math.sqrt(sum);
}
}
for(Text val:value){
for(int j=0;j<val. dimension;j++){
k=Math.pow((key.get(i)-val.get(j)),2); k+=Math.sqart(k)*val.get(j)/sum;
}
}
Context.write(new Text(null), new Text(k));
 }
The algorithm first obtains the sample size according to the sample capacity determination formula,

and uses the K-selection sorting algorithm to perform parallel random sampling on the basis of the
MapReduce framework, and saves the collected sample data to the sample file. Then, the initial value
of the cluster is selected from the sample file through the sample preprocessing strategy, and pre-
clustering is performed. The MapReduce job is started during the iteration, and the MapReduce task is
performed once per iteration, and the new initial value is obtained by using the weight iteration
replacement method. The perturbation of singular value point clustering results is reduced by mean
iteration. When the initial value of the cluster satisfies the set threshold deviation, the iterative process
ends, and the clustering result is saved in the final cluster file.

4. Experimental results and analysis
The experiment consists of 6 PCs, one of which acts as the master node for resource scheduling and
allocation, and the remaining 5 as slave nodes, responsible for the task. The machines use the same
configuration: 1 4-core CPU, 4G memory, 500G hard drive, CPU clocked at 2.9HZ, model Pentium(R)
Dual-Core E6600, operating system Ubuntu 14.04LTS, JDK 1.7.0, The cluster is built using the
Hadoop 2.2.0 version.

4.1. Hadoop cluster tuning
The number of data blocks allocated in the Hadoop cluster (the default size is 64M) determines the
number of concurrent graphs. Therefore, the size of different data blocks and the number of map
concurrency affect the efficiency of the algorithm.

The experiment content is in a Hadoop cluster with 64 cores and 4G memory, one of which is used
as the NameNodes, and the other 5 are used as the DataNode to participate in the calculation. The data
block size is adjusted by modifying the dfs.block.size setting of hdfs-site.xml. Set data blocks of
different sizes for the three sets of data and adjust the number of map concurrency. The experimental
data is based on Table 1 data. The specific allocation is shown in Table1. The running time of the
algorithm is shown in Fig.1.

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042066

IOP Publishing

doi:10.1088/1757-899X/452/4/042066

5

Table 1. Data block allocation

Dataset size
size

64 128 256 512 1024
0.62 9 5 3 2 1
1.2 20 10 5 3 2
1.8 29 15 8 4 2

Figure 1. Running the graph of the algorithm for different map concurrency

It can be seen from Fig 1 that as the data block increases, the number of concurrent graphs
decreases, and the running time of the algorithm does not decrease linearly with the decrease of the
number of concurrent graphs. On the contrary, each data set has its most suitable map concurrency
number.

Since the experimental configuration uses a 4-core CPU, 4 threads of parallel computing; excessive
map concurrency will increase the map task assigned to each CPU core, and each CPU core runs the
assigned map job, addressing The number of times is also increasing, increasing the overhead of the
system. As the number of map concurrency decreases, this overhead is also reduced. However, when
the number of map concurrency of the three sets of data is reduced to 2, the running time is increased.
This is because each machine is doing double-threaded or single-threaded computing, and the
computing resources are idle, and each CPU core is added. The amount of calculation does not fully
reflect the advantages of cluster computing. From the above experiments, it can be concluded that
when the number of map concurrency is close to the number of CPU cores, the efficiency of the
algorithm can be improved.

4.2. Comparison of algorithm performance
In order to improve the performance of the algorithm, the data block files in the six Hadoop clusters are
set to the most suitable map concurrency numbers of the three data sets, and the cluster performance
test is repeated. Compare the performance of this algorithm with the algorithm and cluster tuning in the
default environment. The specific task assignment is shown in Table 2, and the experimental results are
shown in Fig 2.

Table 2. Block file settings

Data set size Block size Map concurrency
0.62 64 9
1.2 64 20
1.8 64 29

0.62 256 3
1.2 512 3
1.8 512 4

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042066

IOP Publishing

doi:10.1088/1757-899X/452/4/042066

6

Figure 2. Comparison of algorithm performance

It can be seen from Fig 7 that the performance of the algorithm has been further improved after
cluster tuning. Since the data block size is 64M in the default environment, in a parallel computing of
a 4-core CPU, each core will be assigned multiple map tasks, and each map job will be addressed
when running, so that the addressing time is the whole. The running time ratio is large; after cluster
tuning, find the most suitable map concurrency number for each data set. Compared with the default
environment, the number of concurrent graphs is reduced a lot, so the proportion of addressing time
will be large. In addition, the advantages of cluster computing to process large data sets are fully
utilized. Therefore, the performance of the optimized algorithm is further improved compared to the
default environment.

5. Conclusion
(1) Comparison by stand-alone experiment, the algorithm in this paper has better and more

convergence than the PK-means algorithm. UCI experiments show that the algorithm has better
clustering accuracy than Canopy-Kmeans and BCkmeans.

(2) In the cluster performance test, by adjusting the number of cluster nodes and calculating the
speedup ratio, the algorithm is adapted to the analysis and processing of big data.

(3) In the cluster tuning experiment, the performance of big data processing is further improved by
adjusting the number of maps and the way of cluster memory.

Acknowledgments
This work was financially supported by the State Grid Corporation of Science and Technology (WBS
number: 521104170019).

References
[1] OCHIAN A, SUCIU G, FRATU O, et al. Big data search for environmental telemetry [C] //

IEEE International Black Sea Conference on Communications and NETWORKING. 2014:
182-184.

[2] ICHIKAWA K, MORISHITA S.A simple but powerful heuristic method for accelerating k-
means clustering of large-scale data in life science [J]. IEEE/ACM Transactions on
Computational Biology & Bioinformatics, 2014, 11 (4): 681-692.

[3] ZHAO W, MA H, HE Q. Parallel k-means clustering based on mapreduce [M] //
CloudComputing. Springer Berlin Heidelberg, 2009: 674-679.

[4] 2014 (2): 29-31. ZHAO Qing. Efficient Algorithm of Canopy-Kmeans Based on Hadoop
Platform [J]. School of Electronic Engineering, 2014 (2): 29-31.

[5] 2016 (5): 26-30, 25. XIAO Xueping, NI Jiancheng, CAO Bo. A BCkmeans parallel clustering
algorithm based on Map-Reduce model [J]. Electronic Technology, 2016 (5): 26-30, 25.

[6] YU Qianqian, DAI Yueming, LI Jingjing. Parallel clustering algorithm ACO-K-means based on
MapReduce [J]. Computer Engineering and Application, 2013, 49 (16): 117-120.

[7] 2014 (2): 657-660. JIA Ruiyu, GUAN Yuyong, LI Yalong. Parallel genetic K-means clustering

IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042066

IOP Publishing

doi:10.1088/1757-899X/452/4/042066

7

algorithm based on the MapRdeuce [J]. Computer engineering and design based on
MapReduce, 2014 (2): 657-660.

[8] ZHU J, LI J, HARDESTY Eetal. GPU-in-Hadoop: Enabling MapReduce across distributed
heterogeneous platforms [C] //Ieee/acis, International Conference on Computer and
Information Science, 2014: 321-326.

[9] DAHIPHALE D, KARVE R, VASILAKOS A V, et al. An Advanced MapReduce: Cloud
MapReduce, Enhancements and Applications [J]. IEEE Transactions on Network & Service
Management, 2014, 11 (1): 101-115.

[10] 2014 (4): 813-825. CI Xiang, MA Youzhong, MENG Xiaofeng. Top-K query method for large
data in cloud environment [J]. Journal of Software, 2014 (4): 813-825.

[11] Güngör Z, Ünler A.K -harmonic means data clustering with simulated annealing heuristic [J].
Applied Mathematics & Computation, 2007, 184 (2): 199-209.

[12] Subramaniyaswamy V, Pandian S C.A Complete Survey of Duplicate Record Detection Using
Data Mining Techniques [J]. Information Technology Journal, 2012, 11 (8): 941-945.

[13] KANARIS L, KOKKINIS A, FORTINO G, et al. Sample Size Determination Algorithm for
fingerprint-based indoor localization systems [J]. Computer Networks, 2016 (101): 169-177.

[14] ZHANG J M.An Improved K-means Clustering Algorithm [J]. Journal of Information &
Computational Science, 2013, 10 (1): 193-199.

