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Abstract. In order to solve the problem of the inverse kinematics of general robot, such 
as slow speed in problem-solving and lower accuracy of the solution, a high precision 
MPGA-RBFNN algorithm is proposed, which introduce the Multiple Population 
Genetic Algorithm (MPGA) into Radial Basis Functions Neural Network (RBFNN). 
Combining with the positive kinematics model of general robots, the RBFNN with 
three-layers is used to solve the inverse kinematics of general robots and the MPGA is 
adopted to optimize the network structure and connection weights of RBFNN. By 
using the way of hybrid coding and simultaneous evolutionary, the non-linear 
mapping from the posture of the robot in the working space to the angle of the joint is 
realized, avoiding the complicated formula derivation and improving the speed of 
solving. Finally, the experimental are tested on the 6R robot, the results show that the 
MPGA-RBFNN algorithm is not only improves the speed of the solving, but also 
enhances the training success rate and the calculation accuracy. 

1.  Introduction 
The approach to the inverse kinematics solution of robots is the process of calculating the angle value 
of each joint by knowing the position and orientation of the end effector [1]. Many traditional inverse 
kinematics solutions, such as the closed-form methods and numerical methods, but they are inadequate 
for general robots and the solution accuracy can not be guaranteed [2].  

Genetic algorithm has the advantages of better global searching ability and stability [3]. Structures 
[4] used the GA improvement strategies to construct the optimization objective function in order to 
alleviate the computational difficulty. Particle swarm optimization is used to introduce into GA to 
solve the inverse kinematics problem efficiently on arbitrary joint chains by Starke [5]. Although the 
solution can be obtained by GA, the GA is not ideal for solving nonlinear problems and the accuracy 
of the solution cannot be guaranteed. 

Radial Basis Functions Neural Network has the better ability of nonlinear fitting. Zubizarreta [6] 
have suggested to use the structured RBFNN, which can be trained quickly to calculate the real-time 
inverse kinematics problems of 3PRS robots. Raşit [7] presented a study based on neural network and 
GA for the inverse kinematics solution of a six-joint Stanford robotic manipulator to minimize the 
error at the end effector. Although RBFNN has achieved certain results in solving the inverse 
kinematics solution of robots, it still has the defects that the network structure is not perfect. Moreover, 
it is easy to trap in local optimum and increase the output error when use the GA to optimize the 
RBFNN [8]. 



IMMAEE 2018

IOP Conf. Series: Materials Science and Engineering452 (2018) 042133

IOP Publishing

doi:10.1088/1757-899X/452/4/042133

2

 
 
 
 
 
 

In this paper, RBFNN is used to solve the inverse kinematics of general robots and the Multiple 
Population Genetic Algorithm (MPGA) is adopted to optimize the network structure and connection 
weights of RBFNN. By using the way of hybrid coding and simultaneous evolutionary, the non-linear 
mapping from the posture of the robot in the working space to the angle of the joint is realized, 
avoiding the complicated formula derivation and improving the speed of solving.  

2.  Kinematics analysis of general robot 
To analyze the inverse kinematics problem, the modified Denavit-Hartenberg frame is also given in 
Fig.1 for robot models, D-H parameters of the Comau NJ-220 robot is given in Table1.The robot has 

an axial offset in the direction of 5Z  at the joint 5, it causes the three axis can not intersect in the robot 

end, which is described as the general robot. 
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Fig.1 The D-H Model of the Comau NJ-220 Robot 
 

Table 1. Joint parameters of Comau NJ-220 robot 

Link i  Twist angle 1 / ( ) 


i  Length 1 / ( )ia mm Offset / ( )id mm Joint angle / ( )i rad

1 0 0 830 [-2.9,2.9] 
2 -90 400 0 [-1.57,1.57] 
3 180 1175 0 [-1.57,1.57] 
4 -90 250 -1125 [-3.14,3.14] 
5 -90 0 10 [-3.14,3.14] 
6 90 0 -230 [-3.14,3.14] 

 

According to the D-H parameters in Table 1, the homogeneous transformation matrix -1i
i T  can be 

expressed as: 
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By successively multiplying the homogeneous transformation matrix, the transformation 
relationship between the end effector coordinate system and the robot base coordinate system can be 
obtained: 
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According to the formula (2), the posture ( , , , , , , , , )x y z x y z x y zR n n n o o o a a a  and position 

( , , )x y zP p p p of the end effector can be obtained, which is the positive kinematics solution of the 

robot. At the same time, the data set of the robot operating space can be obtained using the positive 
kinematics solution. According to the principle of coordinate transformation, the RPY Euler angles 

, ,    of the end effector posture R can be obtained: 
 

2 2arctan 2( , )   z x yn n n                                                              (3) 

 
arctan 2( , )  y xn n                                                                           (4) 

 
arctan 2( , )  z zo a                                                                           (5) 

 

In the process of inverse kinematics solution, the variables , , , , , )  （ x y zp p p are considered as 

the input variables and the joint variable 1 2 3 4 5 6( , , , , , )       is deemed as the output variable. 

3.  MPGA-RBFNN implementation 
There are some problems in the process of the inverse kinematics solution, such as slower speed and 
lower accuracy. In order to solve the problem, the MPGA-RBFNN algorithm is proposed. The process 
of the MPGA-RBFNN algorithm is shown in Fig.2. 

In Fig.2, in order to meet the searching requirements, MPGA sets different control parameters 
according to the differences of populations, and the multiple populations are optimized at the same 
time. In order to achieve co-evolution between multiple populations, different populations are 
contacted by immigration operator in MPGA. 
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Fig.2 Algorithm flow chart of MPGA-RBFNN 

4.  RBFNN algorithm 

In the network structure of this paper, the space posture { , , , , , }   x y zP p p p  of the end effector 

is taken as the six inputs of RBFNN, the output is the angle of each joint 1 2 3 4 5 6( , , , , , )      , which 

is the solution of the inverse kinematics.  
In the selection of hidden layers, the Gaussian function is selected as the basis function, the 

expression is given: 
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In above equation, x R  is the N-dimensional input vector, ix R  is the center vector of the i th 

hidden layer unit in RBFNN, ib  is the width of the i th hidden layer unit in RBFNN. The output of the 

i th hidden layer unit in RBFNN can be expressed as the linear weighted sum of n basis functions: 
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The network error function is defined at the time k :  
 

 
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Where ( )t k is the expected output of the network at the moment k . 
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4.1.  Encoding scheme 
Assume that the maximum number of hidden layer neurons is l , and the number of output neurons is 
n , the MPGA chromosome encoding is listed as followed: 
 

1 2 11 21 1 12 22 2 1 2 1 2            l l l m m lm mc c c b b b                 (9) 

 

Where 1 2 lc c c  is the encoding scheme of the hidden layers, 1 2 mb b b is the encoding scheme of 

the thresholds, 11 21 1 12 22 2 1 2          l l m m lm  is the encoding scheme of the connection 

weights. These all adopt real number encoding, jb is the threshold of the j th output layer neuron. 

4.2.  Fitness function 
There exist the actual output error and expected output error in the neural network, in order to evaluate 
MPGA-RBFNN algorithm, the fitness function is introduced in this paper as: 
 

 
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1 1
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i

F
e k t k y k

                                                 (10) 

 
Where ( )e k  is the sum of squared error between the actual output and the expected output of the 

neural network. Generally speaking, the better the fitness, the smaller the error and vice versa. 

4.3.  Genetic Operators 
In this paper, nonlinear ranking strategy based on roulette method is used to be the selection operator, 
the crossover operator adopts the way of combining multi-point crossings with uniform crossovers.  
The crossover probability is expressed as: 
 

min max( ) ( ) (1 ( ,1)) ( ) ( ,1)    c c cP i P i rand N P i rand N                         (11) 

 

Where min ( )cP i  and max ( )cP i  are the minimum and maximum value of the cross probability of the 

i th population respectively. 
The mutation operator based on dynamic mutation rate is used to be the mutation operator in this 

paper. The mutation probability commonly used is given as: 
 

min max( ) ( ) (1 ( ,1)) ( ) ( ,1)    b b bP i P i rand N P i rand N                         (12) 

 
( ) ( )-

( 1) - ( ( ))
3 3

   （ ）c c
b b

P i P iGEN gen
P i P i

GEN
                                (13) 

 
Where min ( )bP i  and max ( )bP i  are the minimum and maximum value of the mutation probability of 

the i th population respectively. ( 1)bP i  is the mutation probability of the ( 1)i th population, 

( )cP i  is the cross probability of the i th population, gen  is the iterations of the current algorithm and 

GEN  is the total number of iterations. 
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5.  Experimental results and analysis 

5.1.  Accuracy analysis 
Non-repetitive random sampling method is used to select 100 space posture and position from the 

training samples  , , , , ,  x y zP P P  as the input samples, it is corresponding 100 groups joint angles. 

The training sample is normalized to be the input of the RBFNN, the output of the network is the joint 

angle i , The RBFNN is trained and the error indicator is set as 510 . Taking the 2  as the example 

the output error graphs of MPGA, RBFNN and MPGA-RBFNN are shown in Fig.3 at the same 
training time. In order to further compare the differences among the three algorithms, 50 groups data 
of joint angle is randomly selected from the previous 100 groups data no-repeatly to be the test data 
for verification. The results of the three groups are shown in Table 2. 

As can be seen from Fig.3, the changing process of the output error is shown by three algorithms in 
the inverse kinematics resolution of the robot. Although 3 algorithms get the output error, the order of 

magnitude of the output error maintain at the 
510
 level when MPGA-RBFNN is used to solve the 

inverse kinematics of the robot, comparing with MPGA and RBFNN, the performance of MPGA-
RBFNN is better. 

 
 

 
(a)MPGA output error                                               (b)RBFNN output error 

 
(c)MPGA-RBFNN output error 

Fig.3 The output error of three kinds of algorithm 
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Table 2 The results in solving inverse kinematics 

number  1( )   
2 ( ) 

3 ( ) 
4 ( ) 

5 ( )   
6 ( ) 

1 

Target 
-

90.000000 
-

45.000000
90.000000 90.000000 90.000000 45.000000

MPGA 
-

90.002193 
-

45.003086
90.003115 90.002009 90.001961 45.001583

RBFNN 
-

89.999823 
-

45.000273
90.000419 90.000173 89.999798 45.000215

MPGA-
RBFNN 

-
90.000014 

-
45.000009

89.999986 90.000010 90.000004 45.000008

2 

Target 45.000000 
-

45.000000
45.000000 60.000000

-
90.000000 

0.000000

MPGA 44.998493 
-

45.001625
45.000118 60.001894

-
89.998255 

0.001706

RBFNN 45.000159 
-

44.999092
45.000510 60.000918

-
90.001094 

-0.001006

MPGA-
RBFNN 

44.999972 
-

45.000019
45.000017 60.000010

-
89.999708 

0.000021

3 

Target 15.000000 
-

35.000000
45.000000

-
90.000000

-
45.000000 

90.000000

MPGA 15.002159 
-

35.001357
45.001268 90.001158

-
45.004031 

90.002420

RBFNN 15.000208 
-

35.000237
44.999959 90.000108

-
44.999391 

90.000216

MPGA-
RBFNN 

15.000010 
-

34.999990
44.999869 90.000003

-
45.000021 

89.999903

 
According to the results of the joint angle 2  in the first group data, it can be seen that the error 

value is 0.003086 when the MPGA is used to solve the inverse kinematics, the error value is 0.000273 
when the RBFNN is used to solve the inverse kinematics and the error value is 0.000009 when the 
MPGA-RBFNN is used to solve the inverse kinematics. It improves 99.7% and 96.7% compare with 
the MPGA and the RBFNN. In conclusion, although the solution of the inverse kinematics can 
approximately obtained through both MPGA and RBFNN, the computational accuracy of the MPGA-
RBFNN algorithm is better. 

5.2.  Speed analysis 
After training samples are obtained, the newrb function in the MATLAB neural network toolbox is 
used to create and train for RBFNN,  the network training is shown in Fig.4. 
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Fig.4 Performance training of MPGA-RBFNN 
 

As we can see from Fig.4, it is clear that the training accuracy of the network is reach to the initial 
goal after 183 trains. In order to verify the training successful ratio of MPGA-RBFNN, the samples 
number of 3000 are used to obtain the performance of the three algorithms. The comparison results are 
shown in Table 3, the training successful ratio of the MPGA-RBFNN is up to 95% at the same sample 
numbers. the increment is up to 23% and 11% compare with MPGA and RBFNN. Although the 
convergence steps of MPGA-RBFNN are more compared with MPGA and RBFNN, the running time 
and training successful ratio of MPGA-RBFNN are more advantageous. 

 
Table 3 The contrast of algorithm performance 

Algorithm Size The training successful ratio/% the convergence step time/s
MPGA 3000 72 131 10.44
RBF 3000 84 117 9.36 

MPGA-RBFNN 3000 95 183 9.58 

6.  Conclusion 
In this paper, the MPGA-RBFNN algorithm is proposed based on  MPGA and RBFNN, which is used 
to solve the problems of the inverse kinematics of general robot. Combining with the positive 
kinematics model of general robots, the MPGA is adopted to optimize the network structure and 
connection weights of RBFNN. By using the way of hybrid coding and simultaneous evolutionary, the 
non-linear mapping from the posture of the robot in the working space to the angle of the joint is 
realized, avoiding the complicated formula derivation and improving the speed of solving. Finally, the 
experimental is tested on the Comau NJ-220 robot, the experimental results show that the MPGA-
RBFNN algorithm improves the stability of the solution, and the training success rate and calculation 
accuracy are improved. In the future work, we will do further research to reduce the convergence steps. 
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