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Abstract. Aiming at the identification of edible oil quality, this study proposed a multi-
spectral data fusion combined with multi-kernel learning support vector machine
(SVM) method. This method used serial and wavelet fusion approaches to fuse Raman
and near infrared spectral data, and established an identification model for edible-oil
types, with the aid of the multi-kernel learning support vector machine (MKL-SVM).
The performances of the single spectral model and spectral fusion model were
compared, demonstrating that the spectral fusion could effectively improve the
prediction accuracy and generalization ability of the model.

1. Introduction

With the development of economy and living standard, the quality of edible oil has drawn more and
more attention. To gain more profits, many immoral providers fake high-grade edible oil with low-
grade oil, jeopardizing the interests and health of consumers [1-2]. Therefore, it is of great significance
to explore a detection technique for the fast and accurate identification of quality and composition of
various commercial edible oils.

Currently, spectroscopy has been extensively applied in the quality identification of edible oils. In
this field, the support vector machine (SVM) technology [3] has been widely applied to the analysis of
spectral data. Compared to the traditional single-kernel support vector machine, the multi-kernel
learning support vector machine (MKL-SVM), possessing the concept of multi-kernel learning,
applies different projection methods to the different types of data in sample space, reducing the
influence of original data on the parameters of a model and improving the generalization ability of the
model [4]. On the other hand, data fusion is a multilevel data processing process, which consists of
three levels: data, feature and decision layers. Each layer has its specific advantages and disadvantages
[5]. This work adopted the data fusion technique, of which the information compression degree was
appreciable. This merit is beneficial to real-time processing, and the fusion results can provide critical
information for the decision analysis to a great extent because the extracted features are directly
related to the decision analysis.

In this paper, the MKL-SVM models were established based on Raman and near infrared spectral
data by using the data fusion and multi-kernel learning support vector machine technologies, for the
fast identification of edible oil types.
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2. Experimental

2.1. Materials
The performances of the MKL-SVM maodels established would greatly depend on the number of types
of samples. Hence, we purchased eight types of vegetable oils including soybean oil, peanut oil,
rapeseed oil, rice oil, corn oil, sunflower seed oil, camellia oil and olive oil, provided by famous
providers in the globe. In addition, we purchased the feedstock of these eight types of vegetable oils,
and extracted oil samples from the feedstock, to ensure the authenticity of the relative samples.

After the preparation work, a total of 468 edible oil samples were obtained, and is summarized in
Table 1. The SPXY algorithm was used to separate these oil samples into calibration and prediction
sets at a ratio of 3:1.

2.2. Instrument and spectral acquirement

An RamTraceer-200 laser Raman spectral instrument (OptoTrace Technologies, Inc., China) was used
in this study. The laser wavelength was 785nm, the resolution was < 8cm-1, the wavenumber studied
was in the range of 250-2340cm-1, and the maximum laser power was 320mW. The integration time
of the Raman spectrometer was set to be 5 seconds and the laser power was 220mW in this study.

A home-made laser near-infrared spectral instrument with an AxsunXL410-type host (AXSUN,
USA) was used for the fast detection of the quality of edible oil. The spectra were scanned 32 times in
the range of 1350-1800nm, the resolution was 3.5 cm-1, the wavelength repeatability was 0.01nm,
and the signal-to-noise ratio (250ms, RMS) was higher than 5500:1. In this measurement, 2-, 5-, and
10-mm cuvettes could be selected. The temperature was in the range of 20-100<€. Each sample was
tested 3 times at room temperature and the average spectrum was used in the following steps. The
original Raman spectra acquired in the range of 780-1800cm-1 with a high signal to noise ratio are
shown in Figure 1; the original near infrared (NIR) spectra acquired are shown in Figure 2.
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Figure 1. Original Raman spectra.



IMMAEE 2018 I0P Publishing
IOP Conf. Series: Materials Science and Engineering452 (2018) 022054 ~ doi:10.1088/1757-899X/452/2/022054

Absorbance

_D. 1 L 1 L 1 L 1 L 1
1350 1400 1450 1500 1550 1600 1650 1700 1750 1800
Wavelengthinm

Figure 2. Original near-infrared spectra.

2.3. Data preprocessing methods

In the experiment, the Raman spectra were separately preprocessed with the moving average 11-point
method, adaptive iterative reweighted-penalty least square method, and the normalization method
based on the intensity of characteristic peak at 1454 cm-1 (MA11l-airPLS-Nor). The Raman spectra
preprocessed are shown in Figure 3. On the other hand, the NIR spectra were preprocessed following
the standard normal variable transformation algorithm combined with detrending technique
(SNV_DT). The NIR spectra preprocessed are shown in Figure 4.
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Figure 3. Raman spectra preprocessed with MA11-airPLS-Nor.



IMMAEE 2018 I0P Publishing
IOP Conf. Series: Materials Science and Engineering452 (2018) 022054 ~ doi:10.1088/1757-899X/452/2/022054

25

Absorbance

15 | . . . | | . .
1350 1400 1450 1500 1550 1600 1850 1700 1750 1800
Wavelength/nm

Figure 4. Near-infrared spectra preprocessed with SNV_DT.

2.4. Data fusion methods
In this study, the Raman and NIR spectra were separately fused on the feature level with the serial

fusion and wavelet fusion approaches.

The serial fusion transformed the Raman and NIR spectra on the feature level into the same
coordinate system. Then, the dimensions of feature were reduced by using the competitive adaptive
reweighted sampling (CARS) method, for the extraction of the characteristic information after the
fusion of Raman and NIR spectra [6].

The wavelet fusion technique decomposes the spectral information at different frequency ranges.
The different spectral information at different frequency ranges was fused with different information
fusion strategies, for the retention of the effective information of the spectra [7].

The wavelet fusion was performed according to the following fusion procedure:

First, two groups of spectra were separately transformed following the discrete wavelet transform
to derive the low- and high-frequency details of the spectra. Then, the spectral information was fused
following the principle: a larger coefficient was selected for high-frequency details, and mean
coefficient was selected for low-frequency details. Eventually, the fused image was rebuilt through the
inverse wavelet transform [8].

The preprocessed Raman and NIR spectra are shown in Figures 5-7.
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Figure 5. NIR spectra preprocessed with SNV-DT and CARS-optimized-Raman-spectra preprocessed
with MA11-airPLS-Nor.
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Figure 6. NIR spectra preprocessed with SNV-DT and CARS-optimized-Raman-spectra preprocessed
with MA11-airPLS-Nor.
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Figure 7. NIR spectra preprocessed with SNV-DT and wavelet-fusion-Raman-spectra preprocessed
with MA11-airPLS-Nor.

3. MKL-SVM models for type identification
The identification model was established by the MKL-SVM. Based on the idea of multi-kernel
learning, the spectral data were divided into 10 groups according to the feature dimensions. The
features of these 10 groups were the Gauss kernels (RBF). The particle swarm optimization algorithm
(PSO) was employed to optimize the parameters (C, g) of each group. A total of 10 groups of (C, g)
were obtained. The kernels of these 10 different (C, g) values were processed with the weighted voting,
making a kernel with the better classification performance more powerful in the classification process.
Thus, the final parameters (C, g) were 10>8 matrixes ([C], [g]).

The SNV-DT-preprocessed NIR, MAZ11-airPLS-Nor-preprocessed Raman, SNV-DT-MA11-
airPLS-Nor-CARS-fused, and SNV-DT-MA11-airPLS-Nor-DWT-fused spectral data were used as the
input variables, for the separate establishment of MKL-SVM models. The prediction results of these
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MKL-SVM models are shown in Table 2. The parameters in Table 2 are shown in Figures 8-15. The
PSO optimization processes and prediction results of these models are shown in Figures 16-23.

cl =
833 833 850 448 73 226 380 91
899 756 622 804 217 711 245 392
600 920 983 658 532 284 581 830
274 596 614 618 271 630 379 866
251 718 182 550 695 317 521 404
955 1000 985 967 550 933 919 87
544 159 109 978 55 319 634 845
101 64 840 363 415 287 997 626
33 74 181 789 8 240 575 428
971 780 43 837 715 047 498 59
Figure 8. Parameter C1 of the SNV-DT-NIR-MKL-SVM.
gl =
336 896 90 857 393 675 696 440
645 364 531 807 796 213 957 618
914 772 770 577 239 304 873 552
616 1000 877 870 920 ba7 929 310
921 921 893 658 611 680 570 466
439 424 921 357 789 368 a01 613
545 837 996 792 388 319 563 962
54 748 436 246 44 526 196 162
52 596 653 674 938 651 119 566
104 177 546 143 721 506 491 44
Figure 9. Parameter g1 of the SNV-DT-NIR-MKL-SVM.
c2 =
143 a7 138 946 785 1000 817 72
57 16 795 1000 18 912 541 985
gl 403 1000 46 564 324 497 B35
20 1000 4 592 131 498 348 209
99 £692 214 224 443 1000 39 0
356 1000 457 1000 348 774 933 41
32 312 655 1000 987 613 605 515
887 534 75 720 924 1000 241 407
94 1000 187 269 659 514 936 927
a7 522 497 158 72 427 22 471

Figure 10. Parameter C2 of the MA11-airPLS-Nor-Raman-MKL-SVM.
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Figure 11. Parameter g2 of the MA11-airPLS-Nor-Raman-MKL-SVM.

c3 =
766 1000 997 1000 955 1000 946 580
246 1000 817 1000 1000 729 269 932
775 906 1000 704 848 228 845 803
989 1000 1000 634 1000 932 848 603
956 837 935 982 503 480 920 770
405 311 312 272 884 551 136 49
384 1000 699 542 732 10 991 142
1000 563 824 214 928 592 330 174
496 731 875 888 696 864 915 914
1 697 1000 269 436 1000 974 998
Figure 12. Parameter C3 of the NIR-Raman-CARS-MKL-SVM.
g3 =
87 913 1000 478 998 956 1000 769
1000 1000 558 77 1000 83 710 1000
661 900 1000 851 661 976 1000 259
966 1000 1000 684 1000 1000 765 599
783 820 551 1000 663 690 392 383
937 102 418 788 969 476 942 943
355 938 589 780 920 287 720 64
307 1000 778 66 141 206 497 957
904 368 353 56 345 799 770 780
909 17 97 993 1000 910 693 468

Figure 13. Parameter g3 of the NIR-Raman-CARS-MKL-SVM.
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Cd =

25 118 728 22 208 4 274 111
0 858 13 23 0 58 15 291
20 28 118 30 367 1 47 39
67 192 3 1000 5] 26 232 5]
569 146 398 4 0 45 56 922
11 113 968 672 37 452 28 35
265 38 509 ] 413 19 1000 787
12 86 468 0 226 47 53 320
2 41 41 11 0 17 4 9
10 165 131 164 15 13 431 9

Figure 14. Parameter C4 of the NIR-Raman-DWT-MKL-SVM.

g4 =
74 5 957 35 83 214 1 3
321 1 647 380 372 188 240 0
400 55 40 86 5} 1000 37 0
23 5] 1000 2 563 502 0 1000
3 1 16 865 0 342 167 495
756 17 3 1 354 12 238 278
16 605 737 39 7 181 2 175
1000 913 867 9387 792 672 8 i
1000 695 813 15 124 742 432 330
1000 5 32 4 123 346 434 839

Figure 15. Parameter g4 of the NIR-Raman-DWT-MKL-SVM.
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Figure 16. Parameters optimization process of the NIR-MKL-SVM.
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Figure 17. Parameters optimization process of the Raman-MKL-SVM.
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Figure 18. Parameters optimization process of the CARS-MKL-SVM.

A A A A A A e AN A e e e P e P e

i

AN A A 0 AN SN P SN DS
92 ~/~/\/\/\/W “

AN AAA SN pAPSIIAAAANW N A AN
i

88

Number of iterations

) >F”\/\NWWMWWA~/W LA MM
i/

821

80 f

78 . ; . ; L L \ . L
0 20 40 60 80 100 120 140 160 180 200
Fitness

Figure 19. Parameters optimization process of the DWT-MKL-SVM.
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NIR-MKL-SVM predicted results
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Figure 20. Prediction results of the NIR-MKL-SVM.
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Figure 21. Prediction results of the Raman-MKL-SVM.
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Figure 22. Prediction results of the CARS-MKL-SVM.
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Figure 23. Prediction results of the DWT-MKL-SVM.

As shown in Table 2 and Figures 16-23, the prediction models based on MKL-SVM had better
classification performances, and the accuracy was up to 99.15%. In detail, the prediction performance
of the NIR-based MKL-SVM classification model was better than that of the Raman-based one. And,
the prediction performance of the spectra-fusion-based MKL-SVM classification model was better
than that of the single-spectra-based one. It is shown that the fusion of multi-source spectral data can
improve the performance of training models for the establishment of multi-kernel learning support
vector machine classification models. As shown in Figures 8-15, those models with smaller
parameters [C] and [g] had better prediction performances, higher stability, and greater generalization
ability.

4. Conclusion

The classification models based on Raman and near infrared spectroscopy combined with the MKL-
SVM method can fast identify the authenticity of edible vegetable oil. The highest accuracy of these
models was up to 99.15%. The prediction accuracy of the spectra-fusion-based MKL-SVM model was
higher than that of the single-spectra-based NIR-MKL-SVM and Raman-MKL-SVM models,
indicating that the data fusion can effectively improve the performance of MKL-SVM. Between both
spectra-fusion-based models, the wavelet-fusion-based DWT-MKL-SVM had the highest prediction
accuracy, the smallest parameters, and greatest generalization ability.
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