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Abstract. The thermal conductivity of Nan crystalline materials has become one of the 
most advanced topics in international research. In this work, the effective thermal 
conductivity of NC materials based on the two-temperature model of heat conduction 
was studied. In the frame work of the developed model, we take the Nan crystalline 
materials as a composite materials composed by grain interior and grain boundary affect 
zone. The obtained analytical results showed that: (i) the thermal conductivity increases 
with the increasing of grain size with respect to the electron-phonon coupling length; 
(ii) the thermal transport behaviours appear not only through interfacial thermal 
resistance but also by means of the electron-phonon coupling. 

1.  Introduction 
Because of the small size effect, nanocrystalline (NC) materials own unique property in heat transfer 
compared with their coarser grain counterpart. Generally, it is known that the thermal conductivity of 
the NC materials decreases pronounced with the decreasing of grain size [1,2]. As the grain size is 
gradually comparable or smaller than the mean free path and the wavelength of the carriers (phonon and 
electron), some classical models and theories based on macroscale heat conduction are no longer 
applicable [3]. Researchers modified moderately these models and theories to analyze the heat transport 
of NC materials. 

Roberts et al. [4] studied the thermal conductivity of NC composites composed of a matrix argon 
with embedded nanocrystals krypton using molecular dynamics method, their results revealed that the 
thermal conductivity of the composites with NC particles embedded is reduced by 25%. Dong et al. [5] 
established a thermal conductivity prediction model, they focused on the influence of grain size and 
grain boundary on the thermal conductivity of NC diamond. They pointed out that as the grain size 
increases, the grain boundary effect becomes weaker and weaker. We prepared NC copper and 
developed the Kapitza thermal resistance theoretical model [6,7]. In our model, it is no need to consider 
the specific transport process of heat carriers in grain interior and grain boundary, we can obtain the 
thermal conductivity based on the macro-performance of carriers’ scattering. 

In addition to the above theories, researches also studied the thermal conduction of NC materials by 
considering the electron-phonon (e-p) coupling effect. In the 1950s, Kaganov et al. [8] firstly conducted 
a study on the e-p coupling process of femtosecond laser heating films. In 1993, Qiu et al. [9] proposed 
a more rigorous TTM, they derived this model from the Boltzmann Transport Equation by evaluating 
its scattering term using quantum mechanical and statistical considerations. In 2014, Liao et al. [10] has 
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explored the effect of electron-phonon interaction on the lattice thermal conductivity of silicon. They 
found that a significant reduction of the lattice thermal conductivity at room temperature as the carrier 
concentration goes above 1019 cm-3 (the reduction reaches up to 45% in p-type silicon at around 1021 
cm-3). 

To understand the laws of NC material thermal conductivity, in this work, a modified two-
temperature model of heat conduction is used to study the effective thermal conductivity of bulk NC 
materials. We assume that the NC materials is a composite materials composed by grain interior(GI) 
and grain boundary affect zone (GBAZ), as shown in Fig. 1. In Fig. 1, GI is envisaged as perfect lattice, 
the shape of grain is spheres. The basis of this assumptions is that as the grain size down to nano-scale, 
the grain boundary fraction will become significant, as shown in Fig. 2.  

 

 

Fig 1. Schematic of the two-phase composite model of NC materials. 
 

 

Fig 2. Evolution of volume fraction with grain size corresponding to GBAZ. 
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2.  Theoretical Analysis Model 
Under the thermal excitation of an external heat source, the energy transport process in a crystalline 
material occurs in two steps [11]. At the microscopic level, the electrons and phonons have different 
thermal energy levels, and therefore, they are not at the same temperature (in general) [12]. As shown 
by the TTM, the prediction of the electron temperature eT , and the lattice temperature lT  are given by 

[13] 
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Where eC  is the electron heat capacity, lC  is the lattice heat capacity, ek  is the electron thermal 

conductivity, lk  is the lattice thermal conductivity, G  is the electron-phonon coupling coefficient , 

A  is the laser source term. 
Considering the nonequilibrium between the electron and phonon, Eqs. (1) And (2) are generally 

expressed as 
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Where pT  is the lattice or phonon temperature. Typical values of the coupling coefficient for 

variety of materials at room temperature are not vary much [14]. In the present work, for simplicity, we 
assume that the e-p coupling coefficient is an average constant, this assumption will not affect the 
calculating results [15].  

By combining Eqs. (3) And (4), we can get 

2
2

- 0
d

                                         (5) 

2 2 2

1 1 1

e pd d d
                                        (6) 

2 e
e

k
d

G
                                          (7) 

2 p
p

k
d

G
                                          (8) 

Where   is the electron and phonon temperature difference, d is the electron-phonon coupling 
length. 

we can use the spheroidal coordinates to simplify the solution of the problem, given the azimuthal 
symmetry of the problem and based on the method of separation of variables, the difference of the 

electron and phonon temperature can be written as      =S R    ， . 
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We firstly consider that the uniform heat flux 0q


 is applied in the z-axis, then based on the Fourier 

law, the temperature 
0 0

0
2 22

q q
T z

k k
    . The temperature of GBAZ 2T  can be written as 
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Where    =F iF i  ,  1i  is the modified spherical Bessel function of the first kind and order 

one, and A , B  are constants.  
After writing out the expression for temperature distributions, Eq. (12), we now need to develop 

interface and boundary conditions to find the specific solutions. The boundary conditions for the 
temperature and heat flux continuity at the interfaces can be written by 
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Where 1  and 2  are the inner and outer surface of GBAZ, respectively. An enormous amount 

of algebraic calculations can be saved during the evaluation of these boundary conditions by recognizing 
that the general form of the temperature profiles is dictated by the form of the external thermal excitation 
[16].  

By substituting Eq. (15) into the three boundary conditions given by Eqs. (13-16), the temperature 

2T  is expressed as 
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Where 1k  is the thermal conductivity of GI ,   is a parameter of the ratio between the grain radius 

R  and the coupling length d defined by Eq. (7), which indicates the effect of the e-p coupling. If the 
size of the GI is compared to the coupling length ( R d ), the coupling term   tends to the limit 

1+ e pk k . If the grain size is much larger than the coupling length, the coupling term reduces to 

unity ,which can be neglected (d 0 , G   ).   is the volume fraction, 33L is the geometrical 

factor along the minor z-axis.  
Thus, the thermal conductivity of NC materials can be expressed as 
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Where   is a dimensionless parameter.  

3.  Results and Discussion 
Based on present theoretical model, we can firstly calculate the coupling parameter   which is shown 
in Fig. 3.   Introduces the effect of the electron-phonon coupling. As can be seen from Fig. 3, with 
the increase of the relative size R/d, the coupling term   decreases, which is consistent with the 
variation of thermal resistance of electrons and phonons with the relative size. As the thermal resistance 
gets smaller, the direct energy coupling between electrons and phonons will become larger. Fig. 3 shows 
that the e-p coupling term reduces to unit if the dimension of the grain is much larger than the coupling 
length, it is a special case, where   can be neglected, the electrons and phonons are in equilibrium. 
When the relative size becomes smaller, the coupling term will gradually increase. In that condition, the 

coupling term   is mainly determined by e pk k . It is clear that the influence of the electron–phonon 

coupling is not only determined by the relative thickness of the layers, but also by the ratio of electron 
and phonon thermal conductivities. 
 

 
Fig 3. The normalized coupling term as a function of the relative size of grains. 

 
As show in Fig. 4, the calculated thermal conductivity increases with the increased grain sizes, 

especially when the grain size is in the range of 0-200nm, the thermal conductivity decreases rapidly 
with the decreasing grain size. This is mainly contributed by the varying volume fraction of GBAZ. It 
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also can be concluded from Fig. 5 that the thermal conductivity increases with the decrease of coupling 
length. It is because when the coupling increases, the distance of carriers transport will become shorter 
and it makes the thermal transport become easier.  

In order to study the effect of e-p coupling on the effective thermal conductivity, the normalized 
thermal conductivity 2/K K  as function of the normalized size of the grain and the e-p coupling length 

is calculated as shown in Fig 5. By combining the effects of the relative size on coupling term shown in 
Fig. 4 and normalized thermal conductivity shown in Fig. 5, we can conclude that i) the thermal 
conductivity is strongly influenced by the size of the grain with respect to the coupling length R/d, and 
the thermal conductivity increases with the decreased of e-p coupling term  ; ii) the coupling effects 
are remarkable within the interval 10d R d  while in the other interval, the coupling effects will 
become weak.  

 

 
Fig 4. Thermal conductivity versus grain size. 

 

 

Fig 5. Normalized thermal conductivity of NC materials as a function of the normalized radius of 
grains. 
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4.  Conclusion 
The expression for the thermal conductivity of NC materials takes into account the electron–phonon 
coupling. Our calculating results indicate that (i) the effect of the e-p interaction has a simple 
interpretation as thermal resistance, so, the effect of the e-p coupling in NC materials leads to a reduction 
of thermal conductivity; (ii) the thermal conduction of NC materials is dependent on grain size, it is 
shows that the thermal conductivity decreases with the decreased grain size; (iii) the boundary scattering 
effect becomes more and more evident as the grain size decreases to 200 nm.  
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