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Abstract. In order to improve the prediction accuracy of GM (1, 1) model of 
photovoltaic (PV) plants, IAFSA is proposed and used to optimize the background 
values and initial values directly, and an improved GM (1, 1) prediction model is 
constructed in combination with the rolling data updating mode. The example of PV 
plants in service shows that the above-mentioned model is effective and complete, and 
can improve the prediction accuracy of the GM (1, 1) model. 

1.  Introduction  
In 1982, Professor Deng Julong proposed the grey system theory to effectively solve the uncertain 
system problem of few samples and incomplete information [1]. The grey prediction model is one of 
the important contents of the grey system theory, and its core is the grey accumulative generation. The 
most commonly used grey prediction model is the GM (1, 1) model, which has the advantages of less 
required raw data, simple modeling process, convenient calculation, and verifiable accuracy, and it has 
been widely used in many fields such as energy, water conservancy, and economy, etc [2]. However, 
GM (1, 1) model still has its limitations, and it has strong applicability to modeling problems where 
the data changes are more gradual, and when the data sequence grows too fast or presents large 
fluctuations, the model’s prediction results are not ideal and the accuracy is poor [3]. The reason for 
these is that the modeling mechanism of the GM (1, 1) model mainly has the following defects: (1) it 
neglects the change of , usually it takes 0.5 as the value, which results in inevitable system error; (2) 
it defaults that GM (1, 1) model takes the initial point as the basis for solution, which results in that the 
prediction results deviated from the optimal effect of the modeling [4]. In view of above situations, 
many scholars have proposed various methods to improve the prediction accuracy of the GM (1, 1) 
model. (Xiao et al., 2014) improves the accuracy of the GM (1, 1) model by improving the smoothness 
of the raw data sequence, but the power-exponential function transformation process is quite 
complicated. (Zhou and He, 2013) proposed a grey model based on particle swarm optimization 
algorithm, but only to optimize the grey value development of the system. (Chen and Huang, 2013) 
used automatic optimization and weight-determination to select background values, and uses the least 
square method to improve the initial values, although it can improve the model prediction accuracy, it 
significantly increases the complexity of the model. (Pai et al., 2011) used the first and last data in the 
data sequence as the initial condition of the linear combination, and combined the optimization idea to 
solve the weight coefficient, but it still did not avoid the defect that the GM (1, 1) model takes the 
initial point as the basis of the solution. 
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In conclusion, this paper first describes the GM (1, 1) modeling process in detail, analyzes the 
inherent defects in its modeling mechanism, determines the parameters to be optimized in the model; 
second, it uses IAFSA to optimize the key parameters and combines rolling data updating mode to 
construct an improved GM (1, 1) prediction model; finally, the above improved model is applied to 
predict the power of actual PV plants in the chemical industry parks to further verify its effectiveness. 

2.  GM Modeling Process 
Grey prediction is based on a grey model, in which single-order first-order linear differential equation 
GM is most commonly used. Set the raw data sequence as )](,),2(),1([ )0()0()0()0( nxxx x , use 1-AGO 
(Accumulated Generating Operation) to generate a first-order cumulative generation sequence, where: 
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From equation (1), we can see that the sequence x(1)(k) exhibits an exponential growth, which 

exactly meets the requirement of the first-order differential equation. It can be considered that the x(1) 
sequence satisfies the following first-order linear differential equation model: 
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If the values of the parameters a and u are known, by directly solving equation (2) we can get: 
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In equation (3), the undetermined parameter is A, and the known quantities are Yn and B. Since 

there are only two variables, a and u, while there are (n-1) equations and (n-1)>2, the equations have 
no solution. It can be approximated by the least squares fitting method and equation (3) can be 
rewritten as 
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Where E is the error term. 
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Substituting â  and û obtained from equation (5) into the original differential equation, we can get: 
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Solving equation (6), we can get: 
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Writing in a discrete form (because x(1)(1) =x(0)(1)), we can get: 
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Equations (7) and (8) are called GM-predicted time-response function models, which are further 

IAGO-reduced to get the GM prediction model of raw data sequence x(0): 
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Now the basic GM prediction model has been established, usually, relevant prediction criteria are 
used to verify the prediction results. If the accuracy of the original model fails to meet the standard, 
then the model needs to be further corrected or optimized. Under normal circumstances, the 
advantages and disadvantages of GM modeling are analyzed using the post-test difference test method. 
The specific steps are as follows: 

Step 1. Calculating the residual error )()0( ke and relative error q(x) between x(0) and )(ˆ )0( kx , 
respectively: 
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Step2. Calculating the mean of x(0) and its variance s1; 
Step3. Calculating the average value q of e(0)(k) and the variance s2 of the residual error; 

Step4. Calculating the variance ratio 12 ssC  ; 

Step5. Calculating the small probability error   16745.0 skePP  ; 

Step6. Checking the table for accuracy testing, as shown in Table 1. 
 

Table 1 Comparison table of GM accuracy testing 

Grade Relative error qVariance ratio CSmall probability error P 
Grade 1 (good) < 0.01 C  0.35 P  0.95 

Grade 2 (qualified) < 0.05 0.35 < C  0.50 0.80  P < 0.95 
Grade 3 (barely) < 0.10 0.5 < C  0.65 0.70  P < 0.80 

Grade 4 (unqualified) > 0.20 C  0.65 P < 0.70 
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Two indicators of good extrapolation ability of the GM prediction model are: the posterior variance 
is smaller than C as much as possible, the small probability error P is as large as possible. Generally, 
in the model evaluation indicators, it requires that the variance s1 of the observation data is large, and 
the variance s2 of the prediction residual error is small, therefore the smaller the C value is, the better. 
In addition, if the relative deviation   1ske is required to be less than 0.6745, then it allows the 

absolute value of the deviation  ke  increase with it, therefore the larger the P value is, the better. 

Based on this, the two indicators, C and P are used in this paper to test the accuracy of the prediction 
model of the PV plants generated power. 

3.  GM defects and its optimization 
At present, GM optimization mainly starts from the following two aspects: 

3.1.  GM background value optimization 
From equation (5) we can know that, the parameters â and û in GM are closely related to the structure 

of the background value z(1). In the interval [k-1, k], derivation of ua
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From the Lagrange mean value theorem, the general form of the background value can be 

constructed as: 
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The following relationship exists between  and â : 
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 . However, the traditional GM 

simply takes =0.5 and ignores the change of . When it takes =0.5, it will cause prediction failure 
at the time â  is large. 

3.2.  GM boundary value optimization 
From Equation (3), Equation (5), Equation (8) and Equation (9), we can see that: (1) Precondition of 
GM is )1()1(ˆ )0()1( xx  ; (2) Since )1()0(x does not participate in the construction of B and Y, this value is 

not related to the solution of the parameters â and û in the model, but this value affects the index 
correction effect of the GM prediction results. Set the boundary value correction formula 
to  )1()1(ˆ )0()1( xx , where θ is the correction value of the boundary value. Meanwhile, considering 
that the GM prediction result is a result obtained by least-squares fitting, its value does not necessarily 
include the point (1, )1()0(x ). Therefore, if the system boundary value is forced to be selected as )1()0(x , 

it means that restricting above fitting curve to pass the point (1, )1()0(x ) is lack of theoretical basis. 
From this, it can be seen that the parameters affecting GM prediction result of the PV plants power of 
chemical industrial parks are two, respectively are  and θ. In order to accurately estimate the values 
of above parameters, an appropriate chemical industrial park PV plants power prediction objective 
function must be established, and intelligent optimization algorithms should be used to solve the 
parameters. Therefore, this paper chooses the IAFSA  to optimize and solve the parameters. 
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4.  IAFSA-GM-based parameter optimization and rolling data updating 

4.1.  IAFSA optimized GM parameters 
First, establish the IAFSA-optimized objective function of PV plants power prediction model, in 
actual error test, the minimum average relative error of the prediction result is also an important 
indicator, namely: 
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Therefore, in this section, IAFSA is used to optimize the objective function shown in equation (15), 

obtain the parameters  and θ in GM, and predict the output power of the PV modules [9]. The 
optimal parameter values  and θ are solved and their values are substituted into the GM so that a new 
data prediction model can be established [10]. 

4.2.   GM rolling data updating 
If at current time t=k, GM modeling is performed on all data of past time before the current time point, 
then the model is a continuous time function. In principle, GM can extend from the initial value to any 
time in the future. For an intrinsic grey system, unknown uncertainties will continue to enter the 
system over time to affect the system. Therefore, the larger the prediction time scale and the larger the 
grey scale, the smaller the actual meaning of the GM prediction value. Based on this, this paper uses a 
rolling data updating mode, that is to predict the short-term power based on IAFSA-GM, using rolling 
mode to continuously update the model data set, so as to improve the accuracy of PV module power 
prediction as much as possible. 

Assuming k is the current time point, use the IAFSA-GM short-term power prediction to predict the 
PV module output power at time k in the time interval [k+NcT, k+NTT] within Tcycle resolution period 
T, where k+NcT is the prediction start time; k+NTT is the prediction end time; Tcycle is the number of 
prediction cycles, and its value is (NT-Nc)T. Based on this prediction data, only the prediction results in 
the interval [k+NcT, k+(Nc+1)T] are extracted, i.e., the “target period”, and the power output prediction 
of the PV module at the time of k+NcT is taken as the initial state of the next prediction period (namely 
the time period interval [k+(Nc+1)T, k+(NT+1)T]), then using IAFSA-GM to re-predict the power; at 
the same time, the data value with the earliest time (i.e., the data at time k) is deleted in order not to 
add additional calculation amount, thereby keeping the dimension of the entire sequence unchanged. 
Using this rolling data updating method can continuously correct the prediction bias of the model and 
can finally predict the trend in future time period with characteristic data that can reflect the output 
power of PV modules. 

5.  Example analysis 
In order to verify the effectiveness and practicability of the above-mentioned IAFSA-GM-based PV 
plants power prediction model, the GM method and the IAFSA-GM method were used for simulation 
prediction. The experimental data selected in this paper comes from a PV plant in the Huai'an Yanhua 
Industrial Park in Jiangsu Province (118.68 East longitude, 33.73 North latitude). Table 2 shows the 
actual operation data of the PV plant from 09:00 to 11:15 (the sampling interval is 15 minutes) from 
June 10 to June 11, 2014, and the above data are input to the GM and IAFSA-GM respectively to 
predict the PV power generation of the next time period. 
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Table 2 PV power generation data 

Power generation data
Sampling point 

1 2 3 4 5 
Data 1 / MW 8.97 9.92 10.97 12.03 13.58 
Data 2 / MW 17.25 17.93 18.34 18.90 20.71 

Power generation data
Sampling point 

6 7 8 9 10 
Data 1 / MW 15.99 18.23 20.94 24.66 28.07 
Data 2 / MW 23.45 22.18 25.65 27.02 28.18 

 
Table 3 Comparison between GM and IAFSA-GM simulation results 

Data 
selection 

Prediction 
model 

a b   

Data 1 
GM -0.136 7.458 0.5 — 

IAFSA-GM -0.130 7.137 0.171 5.077 

Data 2 
GM -0.0624 15.702 0.5 — 

IAFSA-GM -0.0621 15.660 0.459 3.282 

Data 
selection 

Prediction 
model 

Fitting 
error / % 

Variance 
ratio C 

Small probability 
error P 

One-step 
prediction error 

/ % 

Data 1 
GM 2.1441 0.0652 1 1.6743 

IAFSA-GM 2.0720 0.0763 1 1.4852 

Data 2 
GM 2.8830 0.2212 1 1.7790 

IAFSA-GM 2.8020 0.2121 1 1.2081 
 
When IAFSA is used to optimize the GM parameters, the initialization range of the parameters to 

be optimized is set by the traditional GM algorithm. The simulation results based on the above models 
are shown in Table 3. Solving the existing mechanism defects in GM modeling helps to improve the 
prediction accuracy of the model. At the same time, this paper uses IAFSA to perform optimization 
and iteration on the parameters of GM, and then use the minimum average relative error as the 
objective function to find the best background value and the correction value of the boundary value, so 
that the accuracy of the prediction value is higher and more in line with the actual change. In addition, 
from the above prediction results we can see that, the experimental process of this paper only collects 
operational data from 10 chemical industrial park PV plants, the one-step prediction error of GM and 
IAFSA-GM was controlled within 2%, which further proved that GM can effectively resolve the 
uncertain system problem with few samples and incomplete information. 

6.  Conclusions 
In this paper, IAFSA is used to optimize the background values and boundary values of GM prediction 
model to obtain the optimal parameter values and reduce the influence of raw data volatility; this paper 
further adopts the rolling data mode to continuously update the data set, so as to improve the 
prediction accuracy of the model as much as possible. The simulation analysis and research are carried 
out based on the actual operation data of a PV plant in a chemical industrial park. The examples show 
that, compared with the traditional GM prediction model, the proposed method can effectively 
improve the prediction accuracy of the model. 
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