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Abstract. The paper presents a complex of studies, aimed at obtaining cellular concrete based
on unfired man-made magnesia material - serpentine. The test methods, applied in the paper,
are shown. The properties of materials are described. A method of making cellular concrete
based on serpentine and orthophosphoric acid was developed. In the course of a two-factor
experiment, the key properties of cellular materials were defined. The nature of influence of the
selected factors on the properties of compositions was identified. We found out the optimum
amounts of orthophosphoric acid and the filler - ash, which will allow one to obtain cellular
concrete that would be as good as gas concrete in terms of its physical and mechanical
properties. The material, developed on the basis of serpentine and orthophosphoric acid,
complies with the requirements of GOST 25485-89: density D 1,200, strength class B 10. A
composition with such properties can be obtained in at ms+a/mo = 0.7 — 0.8; ma/ms = 0.11 —
0.17. The heat conductivity coefficient of the selected composition: A = 0.1647 W/(m-°C). The
nature of porosity of the materials being obtained was identified; the structure drawbacks and
ways of their elimination were shown. The prospects of further research were identified.

1. Introduction
Cellular concrete is a porous artificial construction material that is obtained through the hardening of a
preliminary bloated mixture of binding material, water and filler with a steam generator [1].

The application of cellular concretes in construction contributes toward the increase in the energy
performance of buildings and structures, which is particularly topical for the Urals and Siberian
regions [2].

Gas concrete is one of the variations of cellular concrete characterized by closed spherical pores
uniformly distributed throughout the whole volume; the pores communicate with each other and are
from 1 to 3 mm in diameter. Binding agents and special gas-forming agents are used in the production
of this material [3].

A mineral binder that is becoming more and popular today is the magnesia binder [4]. Materials
based on magnesia binders are characterized by top-class physical, mechanical and performance
properties [5-10].

The traditional and most widespread method of obtaining construction binding agents is burning.
However, burning requires a lot of materials, time and money. Also, burning produces hazardous
substances (e.g., CO,), which adversely affect the environment. This problem also applies to magnesia
binding agents.
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One of the means of addressing these problems lays in using unburned magnesia rock [11-15] and a
special grouting fluid, e. g., orthophosphoric acid. Besides, many magnesia rocks interreact with the
orthophosphoric acid very quickly releasing a lot of heat and gas (water vapor and carbon dioxide),
which prevents material from being obtained on their basis [16]. Compositions based on natural
magnesia silicate, e. g., serpentine, have an admissible rate of reaction. As a result of such a reaction, a
material composed of magnesium phosphate, amorphous silica and unreacted serpentine is formed [15,
18].

Serpentine is a by-product of the mining of asbestos, brucite and many other magnesia rocks,
which has not currently found its use in the industry and remains un unclaimed waste that aggravates
the ecological situation.

Serpentine has one specific feature: serpentine rocks gradually carbonize during the process of
weathering [19]. This is the reason why the mixture of orthophosphoric acid and serpentine bloats, i.e.,
the reaction between the acid and magnesium carbonate produces carbon dioxide that bloats the
mixture.

The above features of the ‘serpentine - orthophosphoric acid’ system ensure an opportunity for
obtaining a cellular material on such a base.

2. Material and Methods

Materials 70% orthophosphoric acid (GOST 6552-80 Orthophosphoric acid. Specifications) was used.
Finely ground serpentine (3MgO-2Si0,-2H,0) from the Koncharsky field was used as the mineral
powder in the binding composition (primary material: serpentine with admixed magnesite). The
properties of serpentine are presented in the Table 1.

Table 1. Properties of serpentine.

Property Value
Specific area, cm’/g 4,000
Sieve residue 0.2, % 8.4
Sieve residue 0.08, % 86

Ash produced by the Troitskaya GRES power station was taken as the filler; the properties of the
ash are presented in the Table 2.

Table 2. Properties of ash from Troitskaya GRES power station.

Property Value

Bulk density
when dry, kg/m’ 698
total sieve residue, %:

<0.16 mm 100
0.16-0.315 mm 65.2
0.315-0.63 mm 33.4
0.63-1.25 mm 15.0
1.25-2.5 mm 7.1
2.5-5mm 3.9

The compression breaking strength of the hardened composition was determined according to
GOST [20].

The average density was determined according to GOST 12730.1-78 [21].

The thermal conductivity was determined according to GOST 7076-99 [22].

The strength-density ratio was calculated according to the formula SDR = Remr/p, Where Rempr iS
the ulgimate compression strength of the samples (MPa); p is the average density of the samples
(kg/m®).
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The manufactured samples underwent thermal treatment: 20°C (2 hours), 40°C (1 hour), 60°C (1
hour), 80°C (24 hours).

The thermal conditions, factors and their scope were determined in the course of preliminary
experiments.

3. Results and discussion
A two-factor experiment was planned and conducted in order to study the physical and mechanical
properties of the cellular material based on serpentine and orthophosphoric acid: the first factor was
the *mass of serpentine and ash to mass of 70% orthophosphoric acid’ ratio, and the second factor was
the “‘mass of ash to mass of serpentine’ ratio. The responses were the strength, density, and strength-
density ratio.

The matrix chart and responses are presented in the Table 3.

Table 3. Matrix chart and responses.

Code Code Responses
value value M/ ma/ms, m m m

of of stalMo gy 9 g o 9 p} s R,MPa SDR
factor 1 factor 2 g/em

-1 -1 0.7 - 1,200 0 840 1.38 13.3 9.61
0 -1 0.8 - 1,200 0 960 1.37 13.6 9.91
1 -1 0.9 - 1,200 0 1,080 1.33 8.46 6.35
-1 0 0.7 50 800 400 840 1.24 7.98 6.43
0 0 0.8 50 800 400 960 1.23 7.06 5.73
1 0 0.9 50 800 400 1,080 1.06 3.54 3.33
-1 1 0.7 100 600 600 840 1.22 6.18 5.07
0 1 0.8 100 600 600 960 1.17 4,92 4.21
1 1 0.9 100 600 600 1,080 1.19 3.53 2.97

* Mg+a — Mass of serpentine and ash.
m, — mass of orthophosphoric acid.
m, — mass of ash.
ms — mass of serpentine.

After the obtained results (table 3) were processed, graphs shown in the figures 1 — 3 were plotted.
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Figure 1. Changes in the composition density with respect to variable factors, kg/m°.
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As we know, the density of gas concrete is largely influenced by the amount of gas being released
and the viscosity of the blend. According to the variations shown in the Figure 1, an increase in the
amount of acid in relation to serpentine leads to a decrease in the composition density, since the
amount of gas being released increases, and the viscosity of the blend decreases. An increase in the
amount of filler leads to a decrease in the composition density due to (1) the low density of ash and (2)
a decrease in the viscosity of the blend. The viscosity decreases because the specific surface area of
ash is bigger than that of serpentine.

100% (1)

50% (0)

Content of ash, % of serpentine mass

0% (-1)

0,7 (-1) 0,8 (0) 0,9 (1)
Content of acid/ (serpentine + ash)

Figure 2. Changes in the composition strength with respect to variable factors, MPa

According to the present figure, one can observe similarities between the lines depicting the
changes in the strength with respect to variable factors and the density graph. Similarly, it can be
pointed out that the greatest strength is achieved with the minimal content of the ash filler and with the
minimal amount of acid in the hardening composition. Therefore, the strength of porous composition
within this scope of factor variation directly depends on the material density.

100% (1)

S0% ()

Content of ash, % of serpentine mass

0% (-1)

0.7 (-1) 0.8 () 0.9 (1)
Content of acid/ (serpentine + ash)
Figure 3. Changes in the strength-density ratio with respect to variable factors.

The graph showing the changes in the strength-density ratio is also similar to the previously
analyzed graphs in terms of baseline positions.
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The best SDR is present in the area with the minimal amount of acid and the minimal amount of
ash. The variations show that the SDR decreases when the density decreases and the porosity
increases, which means that the strength of the composition decreases faster than its density.

The Figure 4 shows examples of the cellular system ‘serpentine - orthophosphoric acid.’

Figure 4. Porosity of the “serpentine - orthophosphoric acid’ system.

According to the figure 4, one can see that the pores that are being formed are of irregular shape;
there are cracks that have appeared due to gas formation in the hardening structure. l.e., the formation,
densification and hardening of the present composition are not preferable.

In order to determine the scope of variable factors that will allow us to obtain a material that would
meet the requirements of GOST 25485-89, let us put the obtained graphs (figure 1 and 2) on top of
each other [23]. The results are presented in the figure 5.

100% (1)

0% (0}

0,7 (-1) 0,8 (1) 0.9 (1}

Content of acid! (serpentine + ash)

Content of ash, % of serpentine mass
s (-1)

Figure 5. Selecting the ideal proportions of the serpentine-phosphate composition.

The Figure 5 shows the area of factor variation in which the material based on serpentine and
orthophosphoric acid meets the requirements of GOST 25485-89: density 1,200, strength class B 10.
A composition with such properties can be obtained within the scope of: ms+a/mo = 0.7 — 0.8; ma/ms
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= 0.11 — 0.17. One can suppose that these proportions might change if a serpentine rock of another
mineral composition is used.
The heat conductivity coefficient of the selected composition is A = 0,1647 W/(m-°C).

4. Summary
In the course of the conducted work, it was determined that one can obtain cellular materials from
serpentine and orthophosphoric acid, provided the required formation, densification and hardening
parameters have been selected for such a system. This will allow significantly to increase the
properties of the material being developed.

Since the composition being developed consists of magnesium phosphates, it can be an effective
fire- and heat-proof material [24].

Therefore, obtaining cellular fire-proof materials based on serpentine and orthophosphoric acid has
perspectives for further research.
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