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Abstract. The article deals with the experimental study of the influence of corrosion 
longitudinal cracks in a protective layer of concrete on the change of deformation and strength 
properties of central and eccentric compressed reinforced concrete structures. The results of a 
long-term full-scale experimental study of the kinetics development of the opening width, 
length, and the integral parameter of corrosion longitudinal cracks are presented. Much 
attention is given to the functional dependences of change in short-term rigidity and strength of 
the compressed experimental reinforced concrete structures, both with corrosion-resistant 
longitudinal cracks, and without corrosion longitudinal cracks, on the value of the eccentricity. 
The functional dependences of the change of the relative values of rigidity and strength on 
eccentricity are shown. The results are obtained during a short-term test on the compressive 
load of the direct models of reinforced concrete pillars with corrosion longitudinal cracks and 
without them.  

1.  Introduction 
The structural design of bridge structures determines a widespread use of reinforced concrete 
structures as load-bearing elements. The most common aggressive influence of  environment for 
reinforced concrete structures is a chloride-containing medium, which causes corrosion of steel rods 
and promotes the formation of corrosion longitudinal cracks in a protective layer of concrete, leading 
to a reduction of binding steel rods to the concrete. 

The actual durability of reinforced concrete structures used in liquid chloride-containing 
environment is several times less than the standards because of the corrosion of steel rods [1,2]. 

Reinforced concrete structures of bridge spans have become emergency structures as a result of 
steel rods corrosion and destruction of the protective layer of concrete aged up to 15 years, at an 
increase in deflections by 35%, stress in concrete by 26% and stress intensity in steel rods by 86% 
[3,4]. 

At a reduction of binding of corrosive steel rods with concrete in bent reinforced concrete 
structures by 30%, the load-bearing capacity of normal sections perpendicular to the longitudinal axis 
of steel rods is reduced to 30% with a mass loss of 7.4%, while the durability of reinforced concrete 
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structures depends not so much on reducing of the cross-section area of steel rods, much more from 
the reduction of binding of steel rods with concrete [5,6].  

2.  Actuality, scientific significance 
Despite the determining influence of binding of steel rods with concrete on strength and durability of 
reinforced concrete structures, the coefficients of binding of steel rods with concrete aren’t included 
into the calculation for the limited data of reinforced concrete elements in state standard specifications 
[5]. 

At present the quantitative analysis of change in the binding of corrosive steel rods with concrete 
has not been studied because of lack in regular control of steel rods corrosion, changes in the 
mechanical properties of concrete as a result of the chloride penetration into concrete, as well as the 
available experimental results of changing the binding of corrosive steel rods with concrete. The 
results are received not on the direct models of reinforced concrete structures, and on reinforced 
concrete elements with artificial breaking of binding of steel rods with concrete [6,7]. Therefore, 
actually the beginning of process of steel rods corrosion in reinforced concrete structures is considered 
as the loss of durability of reinforced concrete structures [8]. 

Metal oxide formations are formed in the bent reinforced concrete structures in the areas of 
influence of the calculated normal cracks perpendicular to the longitudinal axis of the bearing 
reinforcement, as a result of corrosion on the surface of steel rods. 

The volume of corrosion materials of steel is exceeded in one and a half - three times the volume of 
the metal (depending on the amount of oxygen contained in the metal oxides) [9-15]. 

The pressure of steel rods corrosion products upon the concrete of the protective layer causes the 
formation of corrosion longitudinal cracks. The decay of the electrochemical process does not occur 
because of the continuing increasing pressure on concrete of steel products corrosion and the 
increasing width of the corrosion longitudinal cracks opening. [16]. 

Objective results of the analysis of the effect in binding changing of corrosive steel rods with 
concrete on the deformation and strength properties of load-bearing reinforced concrete elements can 
be obtained only on direct models of reinforced concrete structures testing at least six test specimens. 
[17-19].  

3.  Problem formulation 
The task of the experimental investigation is to study the kinetics development from the point of view 
of the geometric parameters of the corrosion longitudinal cracks of unloaded reinforced concrete 
elements and to determine the effect of the eccentricity of the short-time compressive load acting on 
reinforced concrete elements with corrosion longitudinal cracks in the protective layer of concrete to 
change their rigidity and destructive loads. 

4.  Methodology of experimental study 
Experienced reinforced concrete samples according to geometric dimensions and reinforcement, 
mechanical characteristics of concrete and steel rods are direct models of reinforced concrete pillars.  

The experimental structures were made of heavy concrete of portland cement of brand 400 
"Mordovcement" with water-cement ratio v/c = 0.45 and granite crushed stone of 5-10 mm fraction. 
Quartz sand with a modulus of fineness Mcr = 2.2 was used as a fine aggregate. Tap water was added 
to the concrete mixture. 

The uncantilever prismatic pillars with geometric dimensions along the length and cross-section, 
respectively 1000mm and 120 х120mm and the thickness of the protective layer of concrete δzsb =15 
mm. They are reinforced with a reinforcement framework with load-bearing reinforcement in the form 
of 4 rods having a diameter φ =8mm of A400 class and distributive steel rods having diameter φ
=4mm class Вр500. 

One-cantilever pillars have geometric dimensions along the length and cross-section in the central 
part, respectively 1000mm and 120 х110mm with a thickness of the protective layer of concrete 15 
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mm. There are cantilevers with a length of 100 mm in the upper and lower part of the height on one 
side of the pillars. One-cantilever pillars are reinforced with a reinforcement framework with four 
bearing steel rods of A4 class having diameter φ =4mm and distributive steel rods of B500 class 
having diameter φ =5mm. Steel rods of Vr500 class having diameterφ = 5mm is used in the 
cantilevers. 

There were 39 one-cantilever pillars in the experimental study. Among them 26 samples were 
affected with aggressive influence of environment and 13 samples were affected with nonaggressive 
influence. 34 uncantilever prismatic pillars also took part in the experimental study. 23 samples were 
affected with aggressive influence of environment and 13 samples were affected with nonaggressive 
influence. 

NaCl additive in the amount of 5% of the cement mass was added to the concrete mixture during 
their manufacture to neutralize the alkali of steam moisture in the concrete and to activate corrosion 
process on the steel rods for the purpose of producing corrosion longitudinal cracks in the protective 
layer of concrete during the long-term full-scale testing of reinforced concrete samples. The additive is 
absent in the control reinforced concrete samples. 

Models of reinforced concrete pillars were tested at an experimental ground in the atmospheric 
conditions of Penza. All samples were moistened with tap water at least three times a day in the warm 
period of the year. In terms of the intensity of corrosion damage to steel rods, these test conditions for 
reinforced concrete samples are characterized as highly aggressive [20]. 

In the process of full-scale tests at least once a month, geometric parameters of corrosion 
longitudinal cracks were measured: the width of the opening and the length of cracks on the surface of 
the four sides of reinforced concrete samples formed as a result of corrosion of the bearing 
longitudinal steel rods. 

Some areas with certain numerical values of the opening width of corrosion longitudinal cracks T , 
followed by the determination of their length Ta were determined before measuring the geometric 
characteristics of corrosion longitudinal cracks. The width of crack opening was measured using a 
Brinnel microscope tube with an accuracy of 25 μm. 

The test results were presented in the form of an integral parameter (IP), defined as the sum of 
multiplication of the width of the opening of corrosion longitudinal cracks Ta  by their length T  
within certain areas on the surface of concrete samples. 

After the completion of long-term full-scale experimental studies in the laboratory all samples were 
tested for definition of central and eccentric compression up tofailure on the PMM-125 hydraulic press 
to determine rigidity and strength. 

The rigidity D which is the common integral characteristic of deformation properties of 
eccentrically compressed elements, was calculated through the bending moment M and the curvature 
of the element K with radius R according to the formula: 

 
1

M MD
R R

= =  (1) 

The radius of curvature R was determined according to the increments of linear deformations on 
the compressed and stretched sides [21]. 

The values of concrete deformation on stretched and compressed sides were measured with the 
help of mechanical tensometers of the Hugenberger during laboratory short-term tests of the samples. 

The strength of concrete was determined by the method of nondestructive testing of concrete 
strength using an electronic strength meter of concrete IPS-MG4.03 after the end of long-term tests of 
experimental structures.  

5.  Experimental studies results 
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Long-term experimental studies of the kinetics as the development of geometric parameters of 
corrosion longitudinal cracks in the protective layer of concrete were carried out for five years from 
2010 to 2015. 

The period from the beginning of the testing to the appearance of corrosion longitudinal cracks in 
the protective layer of concrete on the samples was 15 months, which is equal to 20 years in the event 
of periodic exposure of reinforced concrete structures in a liquid chloride-containing highly aggressive 
environment in the given climatic conditions [22]. 

  Concrete classes for compressive strength of uncantilever prismatic and one-cantilever pillars 
with and without corrosion longitudinal cracks were B49.4 and B50 respectively. 

 Dependences of the average maximum opening width of the of corrosion longitudinal cracks on 
the test time, obtained from the experimental data of twenty-three uncantilever prismatic pillars and of 
twenty-six one-cantilever pillars are presented in the form and (Figure 1). 

 

Figure 1. Dependence of the average 
maximum opening width of corrosion 
longitudinal cracks on uncantilever 
prismatic pillars (circles) and one-
cantilever pillars (triangles) on the test 
time. 

 
Dependences of the average maximum length of corrosion longitudinal cracks on the test time, 

obtained from experimental data of twenty-three uncantilever prismatic pillars and twenty-six one-
cantilever pillars, have the form and (Figure 2). 

 

Figure 2. Dependence of the average 
maximum length of corrosion longitudinal 
cracks on uncantilever prismatic pillars 
(circles) and one-cantilever pillars 
(triangles) on the test time. 

 
Dependences of the average value of the integral parameter on the test time, obtained during the 

experiments of twenty-three uncantilever prismatic pillars and twenty-six one-cantilever pillars have 
the form. 

In the laboratory thirty-four uncantilever prismatic pillars including eleven control samples without 
corrosion longitudinal cracks were tested for central short-term compression. Thirty-nine one-
cantilever pillars including thirteen control samples without corrosion longitudinal cracks were 
subjected to eccentric short-term compression.     

When testing one-cantilever pillars for short-term eccentric compression, the bending moment was 
created by setting the eccentricity e = 40 mm, e = 80 mm and e = 120 mm between the geometric 
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center of the cross section of the central part of the column and the point of application of the resultant 
compressive load. 

Dependence of the variation of rigidity average values of eccentrically bent one-cantilever 
reinforced concrete pillars with corrosion longitudinal cracks on the eccentricity of the applied short-
time compressive load with the corresponding number of specimens ℮1 = 4 cm (12 samples), ℮2 = 8 
cm (9 samples), ℮3 = 12 cm (6 samples) has the form. 

For eccentricities ℮1 = 4 cm, ℮2 = 8 cm and ℮3 = 12 cm, the average rigidity values of eccentrically 
bent one-cantilever reinforced concrete pillars with corrosion longitudinal cracks are D1 = 2.44 kg · 
cm2, D2 = 1.62 kg · cm2 and D3 = 1.30 kg-cm2, for which the relative rigidity values for eccentricities 
e1 = 4 cm, e2 = 8 cm and e3 = 12 cm, respectively are 1; 0.67 and 0.53. 

Dependence of the variation of rigidity average values of eccentrically bent one-cantilever 
reinforced concrete pillars without corrosion longitudinal cracks from eccentricity with the 
corresponding number of test specimens ℮1 = 4 cm (4 samples), ℮2 = 8cm (5 samples), ℮3 = 12 cm (3 
samples). 

For eccentricities ℮1 = 4 cm, ℮2 = 8 cm and ℮3 = 12 cm, the rigidity average values of eccentrically 
bent one-cantilever reinforced concrete pillars without corrosion longitudinal cracks are equal D1 = 
3.55 kg · cm2, D2 = 2.54 kg · cm2 and D3 = 2.193 kg-cm2, for which the relative rigidity values for 
eccentricities e1 = 4 cm, e2 = 8 cm and e3 = 12 cm, respectively are 1; 0.72 and 0.68. 

Dependence of relative value change of  reduction in the rigidity average values of eccentrically 
bent one-cantilever reinforced concrete pillars, having and not having corrosion longitudinal cracks on 
the eccentricity, with the corresponding number of test spesimens ℮1 = 4 cm (4 samples without 
longitudinal cracks and 12 samples with longitudinal cracks); ℮2 = 8 cm (5 samples without 
longitudinal cracks and 9 samples with longitudinal cracks); ℮3 = 12 cm (3 samples without 
longitudinal cracks and 6 samples with longitudinal cracks) has the form (Figure 3). 

 

Figure 3. Dependence of relative value change 
of  reduction in the rigidity average values of 
eccentrically bent one-cantilever reinforced 
concrete pillars, having and not having corrosion 
longitudinal cracks on the eccentricity. 

 
Dependence of the average value change of the destructive compression load for uncantilever 

prismatic pillars and one-cantilever pillars with corrosion longitudinal cracks on the eccentricity value 
corresponding to the number of test specimens ℮1 = 0 cm (23 samples), ℮2 = 4 cm (11 samples), ℮3 = 
8 cm (11 samples), ℮4 = 12 cm (4 samples) is presented in the form. 

The average values of the destructive load of compression for uncantilever prismatic pillars and 
one-cantilever pillars with corrosion longitudinal cracks depending on the eccentricity for ℮1 = 0 cm, 
℮2 = 4 cm, ℮3 = 8 cm and ℮4 = 12 cm respectively have relative values: 1 ; 0.51; 0.26; and 0.13, for 
which the values of the destructive load of compression for eccentricities ℮2 = 4 cm, ℮3 = 8 cm and ℮4 
= 12 cm, respectively are in 1.96; 3.85 and 7.69 times less for the same value than for eccentricity ℮1 
= 0 cm. 

Dependence of average value change of the destructive compression load for uncantilever prismatic 
pillars and one-cantilever pillars without corrosion longitudinal cracks on the eccentricity value with 
the corresponding number of test specimens ℮1 = 0 cm (11 samples), ℮2 = 4 cm (5 samples), ℮3 = 8 cm 
(5 samples), ℮4 = 12 cm (3 samples) has the form. 

The average values of the destructive load of compression of uncantilever prismatic pillars and 
one-cantilever pillars without corrosion longitudinal cracks, depending on the eccentricity value ℮1 = 
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0 cm, ℮2 = 4 cm, ℮3 = 8 cm and ℮4 = 12 cm respectively have relative values : 1; 0.56, 0.29 and 0.18, 
for which the values of the destructive load of compression for eccentricities ℮2 = 4 cm, ℮3 = 8 cm and 
℮4 = 12 cm, respectively decrease in 1.79; 3.45 and 5.56 times compared with the same value at 
eccentricity ℮1 = 0 cm. 

Dependence of relative value decrease of the short-time destructive load of compression applied to 
uncantilever prismatic pillars and one-cantilever pillars, both with corrosion and without corrosion 
longitudinal cracks, on thevalue of the eccentricities ℮1 = 0 cm, ℮2 = 4 cm, ℮3 = 8 cm and ℮4 = 12 cm, 
is represented in the form (Figure 4).  

 

Figure 4. Dependence of relative value 
decrease of the short-time destructive load of 
compression applied to uncantilever pris-
matic pillars and one-cantilever pillars, both 
with corrosion and without corrosion 
longitudinal cracks, on the value of the 
eccentricities. 

 
The depth of concrete carbonization is about 4 mm after five years of full-scale testing of 

reinforced concrete samples. 

6.  Conclusion  
• width average values of corrosion longitudinal cracks with maximum opening, the longest 

length of corrosion longitudinal cracks and the value of the integral parameter are directly 
proportional to the test time; 

•  the resulting products of steel electrochemical corrosion in corrosive longitudinal cracks do 
not slow down the corrosion process on the surface of steel rods during time; 

• rigidity average values of eccentrically bent test specimens, both with corrosion longitudinal 
cracks, and without them, decrease according to the exponential dependence on the value of 
eccentricity; 

• relative values of reduction of rigidity average values of eccentrically bent test specimens both 
having and not having corrosion longitudinal cracks, increase in direct proportion with the 
increase of eccentricity and are for the values ℮1 = 4 cm; ℮2 = 8 cm; ℮3 = 12cm, respectively, 
ΔD1 = 31.3%; ΔD2 = 36.2%; ΔD3 = 40.8%; 

• value of compression destructive load for test samples, both with corrosion and without 
corrosion longitudinal cracks, decreases according exponential dependence with increasing 
eccentricity; 

• relative values of reduction in the destructive load of compression for test specimens having 
and not having corrosion longitudinal cracks vary in direct proportion with the increase of 
eccentricity and are ℮1 = 0 cm, ℮2 = 4 cm, ℮3 = 8 cm and ℮4 = 12 cm, respectively, ΔP1 = 
13.5%, ΔP2 = 20.1%, ΔP3 = 31.5% and ΔP4 = 40.0%.  
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