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Abstract. Trajectory optimization technology used for Mars entry is one of the key 

technologies for planetary exploration. Evaluation of the performance of the entry trajectory 

under conditions of complex atmospheric dynamics, various vehicular design parameters, and 

multiple constraints in the process of entry, are important issues pertaining to the design of 

trajectories. In this study, an efficient evaluation approach of the terminal state for Mars entry 

is proposed based on Gaussian process regression to evaluate the maximum terminal altitude 

for different entry velocities, terminal Mach numbers, and vehicular parameters. Additionally, 

the influences of entry flight-path angle, lift-drag ratio, and ballistic coefficient, on the 

maximum terminal altitude are analyzed. A genetic algorithm is used in the optimization solver 

to avoid local minima and to guarantee the data quality of the training samples used for 

Gaussian process regression. The mean function, kernel function, and hyperparameters are 

selected as the optimization parameters for Gaussian process regression to describe the 

correlation between samples, and the maximum terminal altitude prediction model is then 

established. Numerical simulations demonstrate that the proposed method can achieve the 

evaluation of more than 3000 group scenarios within tens of seconds with a mean relative error 

that is less than 4%. 

1. Introduction 

Planetary exploration is one of the main fields of deep space exploration. Mars, the closest earth-like 

planet in the solar system to earth is usually the preferred target for human planetary exploration. 

However, unlike the earth's environment, Mars entry encounters many challenges given the planet’s 

physical environment, with its thin atmosphere and increased gravity, thereby making it difficult to 

decelerate the vehicle [1,2]. When the vehicle is decelerated to meet the deployment constraints 

imposed for parachutes or other deceleration devices, the terminal altitude can affect the maneuver 

time of the landing process and the range of the target landing site that directly affects the success of 

the entire mission. Therefore, the approach used to evaluate the terminal altitude is an important issue 

in the design of Mars exploration missions. 
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However, when designing the entry trajectory the process involves large-scale work of trajectory 

design because different entry modes and control mechanisms lead to a variety of flight plans. 

Considerable amount of research work has been conducted on the entry trajectory design. Carman, 

Ives, and Geller et al. introduced the guidance algorithm of constant-bank angle profile that was 

adopted by the Apollo mission for the study of Mars entry vehicles [3,4]. Mendeck and Carman et al. 

emphasized the importance of the variable-bank profile for the optimization of Mars-entry trajectories 

[5]. Grant and Shuang et al. considered the terminal altitude as the performance index for the 

assessment of the maximum terminal altitude that could be reached by the variable-bank profile design 

in specific application scenarios [6,7]. Lafleur and Jacob et al. comprehensively studied the maximum 

terminal altitude that a Mars vehicle could reach with combinations of different vehicular parameters 

and entry process constraints [8,9]. However, all the existing research studies have focused on the 

complex modeling of the entry process with different vehicular parameters, depending on a large 

number of numerical calculations, or comprehensively studied the possible entry scenarios of different 

vehicular types, entry velocities, and deceleration devices that required considerable computation time 

in an inefficient manner, or simplified the constructed model to improve the solution's efficiency. It is 

difficult to design an approach that is comprehensive, optimal, and efficient. 

Gaussian process regression can use part of the observed values to establish the mapping 

relationship of the input-output model, so that when the new input values are given, the corresponding 

output can be estimated. Since the prediction method based on GPR does not need a large number of 

complex modeling functions, its computational cost is considerably reduced. The idea of GPR was 

first proposed by Krige for the estimation of the distribution of gold in mines [10]. Thus far, the GPR 

method has been applied to the field of aerospace research, and includes prior work on the aircraft's 

airfoil design [11], aircraft's aerodynamic coefficient assessment [12], and for the assessment of the 

main belt that asteroids can reach [13]. Inspired by this thought, this study presents an efficient 

evaluation method based on Gaussian process regression to evaluate the terminal state of Mars entry.  

This study is organized as follows. Section 2 introduces the Mars trajectory optimization algorithm 

proposed herein, uses it to generate a large number of simulation results, and provides sample data for 

the prediction model based on Gaussian process regression. In Section 3, a maximum terminal altitude 

prediction model of Mars entry is established based on Gaussian process regression, using the existing 

sample data. Section 4 discusses the effectiveness of the maximum terminal altitude prediction model 

of Mars entry, and uses the prediction model to analyze the characteristics of the trajectory, and 

provide the design references under a given mission scenarios. 

2. The optimal trajectory for Mars entry 

In order to provide sample data for the GPR-based prediction model, and to ensure that the sample 

data has sufficient empirical information, this section uses the terminal altitude as the performance 

index, and explores the maximum terminal altitude that the optimal trajectory of the Mars entry can 

reach under different combinations of entry velocities, terminal Mach numbers, lift-drag ratios, 

ballistic coefficients, and process constraints, in a comprehensive manner. 

2.1. Dynamics model for Mars entry 

Considering the rotation of Mars, the following dynamics model is applied. 
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 Herein, r  is the distance between the vehicle and the center of Mars, and   is the rotation speed 

of Mars, 2/ rmug  is the local gravitational acceleration, mu is Mars gravitational constant. 

Equivalently,  ,,,, are longitude, latitude, flight-path angles, heading angles, and bank angles 

[14]. The variables DL, are the lift acceleration and drag acceleration. In accordance with the method 

in [8], 10 bank angles were provided in the velocity domain, and the bank angle profiles are then 

obtained by interpolation. Assume that the aerodynamic parameters can be fully expressed by the 

ballistic coefficient and lift-drag ratio, as stated in equations (7) and (8). 

SC

m

D

                                                                 (7) 

kDL                                                                    (8) 

Among them,   is the ballistic coefficient, k  is the lift-drag ratio, DC  is vehicle drag coefficient, 

and S  is the reference area, and 2

2

1
VD 


 ,   is the Mars atmospheric density. Based on the 

observation data of the Viking, a simplified model of the atmospheric index is adopted herein 

equation(9), whereby 32
0 kg/m 10474.1  , m 108057.8 3hs ,and h  is the vehicular altitude from 

the Mars surface [15]. 
)/(

0
hshe                                                              (9)

 2.2. Vehicular parameters and Mars entry scenarios  

Entry vehicles are classified into manned and unmanned, and they have three different shapes, which 

respectively correspond to the ballistic, ballistic lift, and lift models.  

At present, most of the vehicular lift-drag ratio values are less than unity, except for lift-body 

vehicles, such as the space shuttles. All known Mars missions have used unmanned vehicles with 

ballistic coefficients of approximately 100 2kg/m . Considering the need of manned vehicle landing on 

Mars, and the increase of the required load, future vehicular ballistic coefficients will be 

correspondingly larger. Based on the use of manned vehicles in other missions, the ballistic coefficient 

mainly ranges between 200 and 1000 2kg/m . At present, there are mainly three types of vehicular entry 

velocities: a) 3.3 km/s for entries from a 500 km circular orbit, b) 4.7 km/s for entries from a 1-sol 

elliptical orbit, and c) direct entry velocities, which usually vary between 3-7 km/s  [1,8]. 

Therefore, referring to the typical distribution of characteristic vehicular parameters, the ballistic 

coefficient used in this study was selected to range from 100 2kg/m to 1000 2kg/m in increments of 100

2kg/m . The values of the lift-drag ratio were selected to be in the range of 0.1 to 0.9, at 0.1 increments. 

Moreover, the terminal Mach numbers were equal to 2.0, 3.5, and 5.0, corresponding to the Mach 

number of deployed parachutes, inflatable decelerators, and propulsive decelerators. The entry 

velocities were equated to 3.3 km/s , 4.7 km/s , and 5.5 km/s . The maximum acceleration limit of 

manned vehicles was 4.5 0g  and the maximum acceleration limit of unmanned vehicles was 30 0g , 

where 2
0 m/s8066.9g  and represents the Earth surface gravity acceleration. A total of 1620 groups 

were evaluated with different combinations of vehicular parameters and Mars entry scenarios. The 



4

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012010 doi:10.1088/1757-899X/449/1/012010

 

 

 

 

 

 

convective heat rate was constrained to 1000 2W/cm [8]. 

2.3. Optimization model 

In this study, the entry flight-path angle and the bank angle are considered as the optimization 

variables. The entry flight-path angle and 10 bank angles evenly spaced within the velocity range are 

then optimized [9]. The optimal bank angle profile is obtained through interpolation, and the 

performance index is then calculated. Using a genetic algorithm-based optimization solver, the local 

minimum is avoided by virtue of its global goodness, so as to ensure the quality of the optimization 

results. 

2.3.1. The objective function. Mars entries are expected to have a higher terminal altitude termh . 

Correspondingly, this study selected the terminal altitude as the optimization goal and performance 

index to maximize terminal altitude. As shown in equation (10), termr  is the distance from the planet's 

center to vehicle at the instant when the deceleration device is deployed, and mR is the radius of Mars. 

mtermterm Rrh 
                                                        (10)

 

2.3.2. Process constraints. The maximum acceleration limit reflects the deceleration acceleration F

that the vehicle or astronaut can withstand. The convective heat rate constraint reflects the heat rate Q  

that the vehicle can withstand. 
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The minimum altitude during the process of entering can be classified in two situations. When 

restrictions are imposed, km10min h , and when no restrictions are imposed, km5min h is the 

simulation condition. 

2.3.3. Terminal constraints. Terminal Mach number indicates the velocity at which the deceleration 

devices can be deployed, and the minimum terminal altitude limits the altitude of the vehicle when the 

deceleration devices is deployed. 

fterm MM 
                                                               (13)

 

km0termh
                                                               (14) 

Therefore, 3240 groups of simulations were conducted with combinations of different Mars entry 

scenarios, vehicular parameters, and process constraints. A total of more than 1400 groups of optimal 

solutions were obtained. 

3. Design of terminal altitude evaluation method based on Gaussian process regression 

In this study, Gaussian process regression is used to design the prediction model of the optimal 

terminal altitude for Mars entry. Firstly, use the combination of entry velocity, terminal Mach number, 

ballistic coefficient, lift-drag ratio, acceleration limit, and the minimum altitude as the input x  of the 

prediction model. Use the maximum terminal altitude as the output y  of the prediction model. 
T

term hF
D

L
MVx 




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


 minmax0                                         (15) 

termhy                                                                (16) 

Secondly, select the appropriate mean function and kernel function to design the framework of the 

prediction model. In this study, the zero mean function and the Gauss kernel function are selected, the 

corresponding expressions are in equations (17) and (18). Thus, the prediction data and the training 
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data are subject to a joint normal distribution distribution as in equation (19). Therefore, the mean and 

variance of the predicted data can be calculated by equations (20) and (21). 
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Subsequently, optimize the model hyperparameter  using the training data. Suppose that the 

distribution of   is Gaussian distribution. The Bayesian formula can estimate the likelihood function 

of the hyperparameter ),|( xyp  ,as in equation (23). The joint probability distribution in accordance 

to the dataset is shown in equation (24) and the marginal probability is calculated in equation (25). 
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The optimal hyperparameters can be obtained by maximizing the logarithm of the edge likelihood 

of the training data, as shown in equation (26). By optimizing the hyperparameters, the probability of 

the model training output is maximized, and the prediction error is controlled within a reasonable 

range. 

 2log
2

n
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2

1
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2

1
),|(log 212   IKIKyxyp nn

T                          (26) 

Finally, using the hyperparameters solved by optimization, the prediction model of the maximum 

terminal altitude is determined. Thus, the use of specific parameters of the exploration mission allows 

the prediction model to be used to quickly and accurately evaluate the maximum terminal altitude that 

the vehicle can reach. 

4. Numerical results and discussion 
The simulations were conducted in MATLAB 2015b using an I5-2520 processor at 2.50 GHz, and a 

memory of 8 GB. 

Based on the Gaussian process regression, the prediction model established in Section 3 was used 

to predict the maximum terminal altitude of Mars entry. Part of the sample data was selected as 

training data and the remaining data were used as test data to evaluate the maximum terminal altitude 

and validate the prediction model. In order to ensure that proper and adequate information can be 

extracted under different entry velocities, terminal Mach numbers, vehicle ballistic coefficients, and 

lift-drag ratios and process constraints, the training samples need to have data under different input 

parameters, and be distributed as evenly as possible. Therefore, in this study, the training samples 

were randomly and uniformly extracted under different input parameters to ensure that each acquired 

information type can be learned. 

4.1. Performance verification of prediction model for Mars maximum terminal altitude 

To validate the prediction model proposed herein, it was trained to evaluate the maximum terminal 

altitude and analyze the prediction errors of the test data. A total of 138 sets of data were extracted as 
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test data, and 213, 276, 345, 460, and 690 sets of data were evenly extracted from the rest of the data 

as training data to predict the terminal altitude and analyze the prediction errors. The error 

performance of the prediction results is shown in Table 1, and the relationship between the prediction 

error and the size of the training data is shown in Figure 1. 

Figure 2 and Table 1 indicate that the use of the GPR-based prediction model to evaluate the 

terminal altitude yields a mean relative error of 3.7% for the predicted results, a relative error within 7% 

for nearly 95% of the test data, and a maximum relative error that does not exceed 10%. 

Table 1.Performance evaluation of prediction model 

number of 

test data 

number of 

training data 

Mean 

absolute 

error/km 

Mean 

relative 

error 

Maximum 

relative 

error 

Training,test time-

consuming/s 

138 213 3.50 22.4% 36.8% 0.81 

138 276 2.25 11.9% 28.4% 1.50 

138 345 1.72 7.8% 19.6% 3.79 

138 460 0.74 4.2% 13.5% 18.4 

138 690 0.63 3.7% 9.4% 25.7 

 

Figure 1. Prediction error and the training data size.    Figure 2. Relative error distribution of test data. 

As shown in Figure 1, when the training data becomes more than 500 groups, the performance of 

the prediction model exhibits a minor increase, and the mean relative error of the prediction results 

stabilizes near 4%. Figure 2 shows the relative error distribution with 138 groups test data and 690 

groups training data. 

4.2. Application to an elliptical orbit entry with a parachute decelerator 

The prediction model based on the Gaussian process regression can evaluate the terminal altitude with 

different Mars entry scenarios, and analyze the characteristics of the entry trajectory with the entry 

flight-path angle obtained by the optimization algorithm. Due to the length of the space, this section 

takes the elliptical orbit entry with parachute decelerator as an example to show the numerical results. 

Manned Mars exploration is the focus of future Mars explorations. Compared with unmanned 

vehicles, the atmospheric entry process of manned vehicles imposes strict constraints for the 

maximum acceleration limit, thereby affecting the maximum terminal altitude. Figure 3 show the 

maximum terminal altitude and optimal entry flight-path angle of unmanned vehicles. Figure 4 show 

the maximum terminal altitude and optimal entry flight-path angle of manned vehicles. 
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a)                                                                                   b) 

Figure 3. Maximum terminal altitude and optimal entry flight-path angle of unmanned vehicle. 

 
a)                                                                                   b) 

Figure 4. Maximum terminal altitude and optimal entry flight-path angle of manned vehicle. 

As it can be observed from Figure 3 a) and Figure 4 a), in order to reach a larger terminal altitude, 

the vehicle is expected to have a higher lift-drag ratio and a lower ballistic coefficient, and the 

unmanned vehicle can reach a much higher terminal altitude than the manned vehicle. Moreover, the 

manned vehicle can hardly meet the deployment conditions of the parachute when the ballistic 

coefficient is more than 600 2kg/m . Figure 3 b) and Figure 4 b) show that for a manned vehicle with an 

elliptical orbit entry and uses the parachute as the decelerator, the optimal entry flight-path angle is 

approximately 10°. Compared to the unmanned vehicle, the optimal entry flight-path angle is much 

smaller. At the same time, when the vehicle has a lower lift-drag ratio, a relatively small entry flight-

path angle should be used to enter the Mars atmosphere. As the lift-drag ratio increases, the optimal 

entry flight-path angle become larger. However, when the vehicle has a higher lift-drag ratio, the 

optimal entry flight-path angle fluctuates as the ballistic coefficient and lift-drag ratio change. The 

reason for these outcomes may be that a larger entry flight-path angle provides the vehicle with more 

time to decelerate in the dense atmosphere, and the increase of lift-drag ratio can ensure that the 

vehicle decelerate without impacting the Mars surface. However, as the lift-drag ratio increases, a 

larger entry flight-path angle will cause an acceleration overload that the vehicle cannot withstand, so 

when the maximum constraints are reached, the optimal entry flight-path angle decrease instead.  

5. Conclusions 
In this study, an efficient evaluation approach of the Mars entry terminal state was proposed, based on 

Gaussian process regression, to evaluate the maximum terminal altitude for unmanned and manned 

vehicles of different entry scenarios, vehicular parameters, and process constraints. The maximum 

terminal altitude that the vehicle can reach under different combinations of parameters was optimized 

using a Mars entry trajectory optimization algorithm that provided the sample data for the GPR-based 

prediction model. The proposed method was used to evaluate the maximum terminal altitude data 

from more than 3000 groups. The evaluation process took less than 25.7 s. In contrast to traditional 
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trajectory optimization algorithms, which solve one group of data within tens of minutes to hours, the 

assessment efficiency was greatly improved. Compared with the optimal solution obtained using the 

optimization algorithm, the mean relative error of the evaluated results was 3.7%, and 7% for almost 

95% of the predicted results, based on Gaussian process regression. Using the GPR-based method 

proposed herein, the Mars maximum terminal altitude prediction model can provide valuable insights 

to the design of the Mars exploration mission. Because of its high-efficiency calculation attributes, it is 

expected to provide support as an auxiliary means for online optimization of the Mars entry 

trajectories design. 
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