
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012026 doi:10.1088/1757-899X/449/1/012026

Design of Universal PCIe Interface Module Based on Vs

Tingting Du
1
 and Qingzhong Jia

1

1
Key Ministry Education Laboratory of Dynamics and Control of Flight Vehicle,

Beijing Institute of Technology, BIT, Beijing, China

bitdtt6979@163.com

Abstract. Due to wide variety of interfaces and complex bus protocols, the general detection

system has problems such as high bus usage threshold and poor portability of the host

computer software, which greatly reduces the user's development efficiency of the detection

system. In response to the issue, this paper designs a universal interface module for PCIe based

on vs. The module provides unified functional interfaces, through which the data transmission

of all bus devices can be easily and reliably controlled. In this paper, the design idea of the

universal interface module is explained. Finally, the module is illustrated and the result shows

that the designed scheme is feasible.

1. Introduction

With the development of computer technology, the detection system consisting of the main control

computer and various expansion modules is widely used in various fields[1]. Due to variety of

interfaces of the measured object, the detection system is required to be able to integrate multiple

interfaces, and these interfaces need to be able to change as the measured object changes. At present,

the interconnected buses with high performance and wide application are mainly Gigabit Ethernet,

PCIe, RapidIO, etc[2]. Among them, PCIe (peripheral component interconnect express), a serial

computer expansion bus standard, is widely used in the field of embedded detection because of its

high bandwidth, optional link number and high transmission speed[3].

For specific application of bus interfaces, each module manufacturer provides mature, complete

and powerful APIs to meet various possible needs of transmitting data. However, in most detection

systems, only a small part functions of bus interfaces are used, the complicated API parameters and

the interfaces that cannot be transplanted due to different application protocols impose high

requirements on developers of the detection system. At the same time, the interface matches the

respective PC software, so the diversification of interfaces in the detection system results in poor

software portability, a large amount of repetitive work for the development of the PC software and

high development cost of the detection system. Therefore, how to improve program portability[4],

reduce system development costs, and generalize interface applications have become some of the

focuses of current research for computer detection systems.

By using the design pattern idea[5] and the technology of virtual function overloading, this paper

establishes a unified user-oriented interface model and studies the generalized design of bus interface.

The purpose is to make bus interfaces of the detection system intuitive and easy to use, improve the

scalability and portability of system software.

2

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012026 doi:10.1088/1757-899X/449/1/012026

2. Universal interface model establishment

Considering the generality requirement of interfaces, a universal interface model is established as

shown in figure 1.

Application software

Universal function moduleInterface definition layer

General purpose interface

RapidIO API Ethernet API

Interface implementation

layer

 Universal

interface module

PCIe API

Functional
interface

Functional
interface

PCIe driver RapidIO driver Ethernet driver

PCIe
functional

module

RapidIO
functional

module

Ethernet
functionl
module

Operating system

Hardware device

Figure 1. Universal interface model.

The whole model consists of four parts, in which the application software is responsible for human-

computer interaction, and the hardware devices follow the bus protocols to achieve their respective

functions. These two parts are not described in detail in this paper. As a link between the hardware

device and the operating system, driver enables the host computer to operate the hardware device

indirectly by calling APIs (Application Program Interface) provided by the operating system.

Referring to the seven-layer architecture of the Open System Interconnect (OSI)[6], the universal

interface module designed in this paper is equivalent to the top layer of OSI, the application layer. Its

function is to provide the service interface to the users directly and complete the connection between

the application and the network operating system.

As a focus of this design, the universal interface module can be divided into two layers. The upper

interface definition layer abstracts and defines various operations and provides general purpose

interfaces to users. In addition to basic operation interfaces for data transmission, it also includes

additional function interfaces and user-setting interfaces. Through this layer, the application can

realize the operation of interfaces of various buses without differentiation, and users can control the

data transmission process intuitively, simply and reliably.

The lower interface implementation layer distinguishes the specific application, and further designs

and encapsulates the basic APIs provided by the operating system into functional interfaces for the

upper layer to call, thereby completing the concrete implementation of the general purpose interfaces

defined by the upper layer. This layer further designs and improves the original reading and writing

functions of the respective bus. Taking PCIe bus as an example, this layer implements functions such

as periodic transmission, packet transmission, task scheduling and fault tolerance mechanism setting to

ensure reliable data transmission. The interface definition layer and the interface implementation layer

together form a bridge between users and different bus devices.

3. Universal interface module design
The universal interface module is divided into an interface definition layer and an interface

implementation layer. Taking PCIe, RapidIO and Ethernet protocols as examples, the interface

definition layer introduces generality and functionality. The design and packaging ideas of this layer

are illustrated through the class diagram and important codes. For the interface implementation layer,

it takes PCIe as an example to describe how to further encapsulate the operating system APIs into

functional interfaces through working timing diagrams, thereby realizing the concrete implementation

of general purpose interfaces reliably.

3

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012026 doi:10.1088/1757-899X/449/1/012026

3.1. Interface definition layer

Analogous to the black box, this layer shields diversity of different protocols, abstracts APIs under

different protocols into general purpose interfaces and provides them to the users, realizing that the

application does not differentiate the operations of peripheral no matter which protocol is followed.

General purpose interfaces defined by this layer are shown in figure 2.

General purpose interfaces

Basic operation interfaces Additional function interfaces User-setting interfaces

Verification
function

Encryption
function

Get
device

list

Open
device

Initialize
device

Receive
data

Send
data

Abort
transmission

Close
device

Priority
setting

Error
code

setting

Working
mode
setting

Figure 2. General purpose interfaces.

Through the overloading of above general purpose interfaces, the specific problems solved by this

layer include: establishment of unified user-oriented interface model, parameterized design of

interface configuration, introduction of general additional functions, design of task scheduling and

working pattern. These key issues will be explained in the next section.

3.1.1. Unified user-oriented interface model. According to the defined general purpose interfaces, the

main class diagram of the unified user-oriented interface model is shown in figure 3.

InterfaceBase

Encryption m_enccryption

Verification m_verification

GetDeviceList()

Open()

Read()

WaitInterruptionEvent()

Write()

SetEncryption()

SetVerification ()

Close()

Encryption

DESEncrypion()

Verification

CheckFunc()

PortParam

m_ReadBufferOffset

DeviceFactory

CreatDevice()

InterfaceCOM

Read()

InterfacRapidIO

Read()

Write()Write()

Verification1

CheckFunc(){

SumCheck()}

Verification2

CheckFunc(){

CRCCheck()}

GetLastError()

SetPriorityThread()

Stop()

SetOperateMode()

m_WriteBufferOffset

m_BufferWidth

m_ParamList[]

RegisterDevice(PortParam

*pPortParam,char *pBuffer)

Init()

Init()Init()

InterfacePCIe

Read()

Write()

Init()

Figure 3. Class diagram of the interface definition layer.

The InterfaceBase class in the class diagram is the base one for all classes and it encapsulates

general purpose interfaces defined for users in the data transmission process. Under the premise of

satisfying the versatility, the class simplifies interfaces as much as possible, reduces the number of

interfaces, lowers the threshold of use and facilitates users to operate the interfaces intuitively as well

4

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012026 doi:10.1088/1757-899X/449/1/012026

as control the entire data transmission process. These interfaces include obtaining the current device

list, opening the device, initializing, reading, writing, aborting the transmission, setting the task

priority, obtaining the error code, setting the working mode, encrypting, verifying, and turning off the

device, which embody the "commonness" of interfaces. The "personality" embodied by different

devices is implemented by the factory mode, that is, the DeviceFactory class in the figure 3.

After executing GetDeviceList() in the base class, we can obtain the flag word and the specific

number device_num from zero without repetition corresponding to each device. According to the flag

word (PCIe device is "PCIe"), the CreateDevice() method in the DeviceFactory class instantiates the

InterfacePCIe object, thereby completing the overloading of virtual function under the PCIe protocol.

The factory mode makes it unnecessary to change functional functions of each bus class inherited by

the base class every time the device is replaced, just instantiating the corresponding object, thereby

reducing the amount of code modification and repetition, and achieving the purpose of separating

"realization" and "change". Because functional modules of different buses have structural similarities,

the PCIe is used for description. The specific implementation code takes c++ as an example:

class DeviceFactory //The DeviceFactory class

{

Public:

Void CreateDevice(string DeviceName)

 {

InterfaceBace *p_inter_base;

case(DeviceName)

 {

 PCIe://Taking PCIe as an example

 InterfacePCIe m_inter_PCIe;

 p_inter_base=&m_inter_PCIe;

 // Instantiate other bus objects

 }

 }

}

By instantiating different interface objects, virtual functions in the base class are overloaded in the

corresponding interface subclass, and functions under the respective bus protocol are completed in the

overloaded functions, thereby realizing the polymorphism required by the system. In other words, the

unified user-oriented interface model completes the conversion of dedicated interfaces to general

purpose interfaces.

3.1.2. Interface initialization. The types and amounts of configuration information required by the

interfaces of different buses vary. To parameterize the initialization work, the PortParam class in

figure 3 is designed as follows:

class PortParam //The PortParam class

{

public:

long m_ReadBufferOffset; // Reading buffer offset address

long m_WriteBufferOffset; // Writing buffer offset address

long m_BufferWidth; // Buffer size

char m_ParamList[16];

}

There is no method in this class, only the property set to configure the interface information. The

reading/writing buffer offset address and the buffer size represent the configuration information shared

by all buses. In addition, the 16-byte array m_ParamList[] is declared to store different configuration

information required by each bus. For example, CAN requires baud rate and ID number. Ethernet

requires IP address and port number. The volume of this array can be adjusted.

5

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012026 doi:10.1088/1757-899X/449/1/012026

All searched bus devices should be registered uniformly before the interfaces are initialized, that is,

RegisterDevice(PortParam *pPortParam, char *pBuffer) in the base class. All configuration

information obtained from users stores in the pBuffer array. According to the size of attributes in the

PortParam class, 0-39 bytes in the array represent the configuration information of interface 0, 40-79

bytes represent of interface 1, and so on. In this function, the same number of *pPortParam objects are

instantiated to the number of devices, then the configuration information in the pBuffer array is

assigned to the corresponding object. The other array DeviceArray[] with the same capacity as the

number of devices is created. The assigned *pPortParam pointers are stored in this array, that is, each

element in the array represents the configuration information of one device, and the number of each

array element represents the number of device, which corresponds to the device_num. In this way,

regardless of the addition and deletion of device, it will not affect the registration and configuration of

other devices.

In the subclass, the initialization virtual function is overloaded, that is, Init(char *pDeviceArray,

device_num). According to the device_num, we can find the corresponding *pPortParam and then

parse the configuration information in it, thereby completing the initialization of the interface. At this

point, the generalization processing of the universal interface module is also completed.

3.1.3. General additional function. In order to ensure the reliability and security in data transmission

process, the module adds an encryption interface and a verification interface. This design uses the

strategic mode to implement the introduction of multiple encryption algorithms and verification

algorithms. Through this mode, whether encryption/verification or not and which

encryption/verification algorithms are used will not affect the client program, which will achieve high

cohesion and low coupling of code, and improve the flexibility of the application.

This mode is scalable and can continue to add verification and encryption algorithm without

changing the rest of code. Users can expand the module according to this mode if the system needs to

support other data processing functions.

3.1.4. Task scheduling. Because the system has multiple bus interfaces to share the tasks together, in

order to achieve smooth and reliable work during the data transmission process, task scheduling

among interfaces is essential. In the case where users do not set the priority of interfaces, the tasks

enter the queue by default in the order of arrival, and are executed in order. In order to meet the user's

own requirements for the bus scheduling order, the InterfaceBase class in figure 2 reserves the

SetPriorityThread (PKTHREAD Thread, KPRIORITY Priority) interface, which is convenient for the

users to customize the bus priority. The priority of the transmission task in the program should

correspond to the user-defined priority. If there is a task command with higher priority during the task

transmission process, the corresponding thread should be created to ensure that the data transmission

process conforms to the bus priority set by users.

3.1.5. Working pattern. In order to make users more intuitive and more convenient to control the data

transmission process of the bus device, general purpose interfaces also include GetLastError() and

SetOperateMode(). Between them, GetLastError() is used to obtain the error code. Users can

customize the error codes according to the possible errors during transmission process and visually

monitor the status of the data transmission through the interface.

SetOperateMode(int type, unsigned int port_period, unsigned int interrupt_period) allows users to

set the working mode of interfaces manually. Taking PCIe as an example, the first formal parameter

represents the custom mode word, including periodic transmission mode: 1, big data transmission

mode: 2, and small data transmission mode:3. For the aperiodic transmission, the second and the third

parameters default, that is, the timing transmission period and the interruption period to stop periodic

transmission. The program determines the required working mode automatically according to the data

size when there is no working mode setting. Once the mode is set, it is forced to execute according to

the user’s command so that user has full control over interfaces.

6

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012026 doi:10.1088/1757-899X/449/1/012026

The universal interface module is designed and packaged through the above modes, with clear

hierarchy, well-organized code and high maintainability. And the designed interfaces meet the

generalized and functional requirements on the basis of ensuring the controllable bus.

3.2. Interface implementation layer

In order to improve the reliability of interfaces, in the interface implementation layer, the inherent

APIs of each bus are redesigned and encapsulated into functional interfaces, which can be invoked by

the interface definition layer to realize generalization of interfaces. Compared with the inherent API,

the functional interface makes the data transmission process more reliable. Next, taking PCIe as an

example for detailed explanation.

Typical API functions and corresponding callback routines in the kernel driver of the PCIe bus are

shown in table 1.
Table 1. Typical APIs and callback routines of PCIe.

API function KMDF callback routine

CreateFile EvtDeviceCreate

ReadFile EvtIoRead

WriteFile EvtIoWrite

DeviceIoControl EvtDeviceIoControl

CloseHandle
EvtFileCleanup

EvtFileClose

By calling API functions and executing the corresponding routines, the basic communication

functions between the host computer and the hardware device following PCIe protocol can be

realized[7]. For the data transmission process, this layer firstly solves the selection of bus working

mode. Taking PCIe as an example, the design of working mode judgement is shown in figure 4.

Start

Mode

word=null

Data

length>N

Mode

word=1

Small data
transmission mode

No

Yes

Yes

No

Yes

Mode

word=2

No

Yes

No

Big data
transmission mode

Periodic
transmission mode

Big data
transmission mode

Small data
transmission mode

Figure 4. selection of the data transmission mode.

Next, according to the user’s settings, two types of working modes, periodic transmission and

single transmission, will be introduced in detail. In the periodic transmission process, the operation

timing diagram is used to explain the judgment and processing of the periodic transmission routine. In

the single transmission, PCIe packet transmission mechanism, priority mechanism and fault tolerance

mechanism are introduced in detail through timing diagrams of reading and writing processing.

3.2.1. Periodic transmission. Because the periodic transmission can be regarded as resending data

multiple times in a fixed cycle. it is necessary to judge whether the data is periodically sent before

processing the data transmission tasks. According to the user’s settings, the working timing of the

periodic transmission is as shown in figure 5.

7

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012026 doi:10.1088/1757-899X/449/1/012026

Start

Open and initialize the port

SetOperateMode(1,50,120)

Start the port

Mode

word=1？

Periodic
transmission routine

Yes

Interrupt
cycle

No

Yes

Interrupt processing

End

No

Single transmission
routine

No

Figure 5. Working timing of periodic transmission.

According to the user’s setting SetOperateMode (1, 5, 120), the flag word is 1, which means the

data is sent periodically. In the periodic transmission routine, one timer is initialized according to the

interface period set by the user for 5s, and the data is transmitted every 5 seconds. The interrupt timer

is initialized simultaneously in the routine. After 120s, the transmission is aborted and the

corresponding routine of interrupt processing is executed.

3.2.2. Single transmission. A round of single data transmission includes the most basic reading and

writing functions required by the detection system. According to the user's demand for the amount of

the transmitted data, this design adopts two working modes: DMA transmission for big data[8] and

register transmission for small data.

In order to avoid long-term occupation of the bus caused by data transmission, a packet

transmission mechanism is introduced, which is convenient for other operations in the packet

transmission gap. In order to ensure the controllability and correctness in the data transmission process,

the custom transmission protocol is designed to perform fixed encapsulation processing on the

transmitted data in the form of a structure. The data packet protocol is shown in table 2.

Table 2. Data packet protocol.

Type Byte number Remark

Frame head 2 Fixed value

Target, source 1

The upper four bits are the

target, the lower four bits are

the source; 1 is the PC, and 2

is the hardware device.

Way ID 1

1:Event

2:Packet head

3:Sub-packet transmission

4:Packet cancel

5:Sub-packet retransmission

6:Small data transmission

8

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012026 doi:10.1088/1757-899X/449/1/012026

Type Byte number Remark

Event ID 1 User-defined event content

Frame ID 2

Total packet number in the

header packet

transmission;Sub-packet

number in the sub-packet

transmission

Data total

length
4 Special for packet head

Data section 10240

Checksum 4

As shown in the data packet protocol, the data portion occupies 10 KB of space, which is intended

to select the data transmission mode automatically according to the data size. When there is no

working mode setting, if the data size is less than 10KB, IODeviceControl direct transmission mode is

adopted, and if it is larger than 10KB, DMA transmission mode is adopted. The DMA packetization

method uses a header packet plus sub-packets. Each of packets has fixed length, and the last one is

filled with 0 if it is not full. The sender is the process of unpacking and sending data, while the

receiver is the process of receiving and combining packages. Following the data packet protocol, the

writing timing is shown in figure 6.

Send request

DMA mode

Fill packet head

No

Yes

Fill packet head

IODeviceControl DMA

Unpacking

Enter the task queue1

Out queue
No

Yes

Enter the task queue2

Out queue

Yes

No

Figure 6. Working timing of writing process.

Unlike sending data, receiving data has no periodic concept and it is a passive behavior for the host

computer. When the hardware device sets the interruption signal of transmitting data, the

corresponding event is triggered in the kernel program, that is, WaitInterruptionEvent() in the base

class. This interface listens to the event triggers of all buses. Once the event trigger is detected, it will

enter the message response function of specific bus according to the trigger message, that is, the

overloaded Read() in the corresponding subclass, thereby realizing the generalization of reading

process. The reading timing under this design is shown in figure 7.

It can be seen from the reading timing that the fault tolerance mechanism needs to be set for

receiving data. In this design, if the verification fails, data will be retransmitted automatically. If the

number of retransmissions is more than three, the cause of error will be recorded for later investigation

and the receiving process will be cancelled. To continue the data transmission process, sender must

resend actively.

In addition, in order to ensure the real-time performance in the data transmission process,

considering the dual influencing factors of waiting time and task time[9], this design sets the task

priority mechanism - double queue mechanism. The data packets of big data and small data are

9

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012026 doi:10.1088/1757-899X/449/1/012026

respectively stored in the two queues, the corresponding number of data packets in the two queues are

alternately popped in a fixed number ratio (e.g. large: small = 5:1). After one queue pops up packets, it

switches to the other queue. If the number of packets in the queue is less than the specified number, all

packets in it are popped up. If the number is zero, the other queue is switched. This kind of priority

mechanism, which is mainly based on transmission of big data packets and supplemented by small

data packets, has a simple algorithm and can also solve the problem that the time of big data

transmission is so long that the system cannot respond in time. At the same time, it can avoid the

situation that the big data transmission waits too long due to the accumulation of small data packets.

Start

Event
trigger

No

Enter the task queue

Yes

Out queue

Yes

No

Receive data

Parse header，
combine package

Pass
verification

Yes

No

Data processing

Figure 7. Working timing of reading process.

By introducing the design of periodic transmission and single transmission, this section describes

design ideas and implementation methods of the interface implementation layer completely. The

functional interfaces designed in this layer are secondarily encapsulated by the interface definition

layer to implement general purpose interfaces that meet the design requirements.

4. Analysis of experimental result

In order to realize the communication bridge with reliability, functionality and versatility, this design

proposes a universal interface model. To verify the feasibility of the scheme, this paper uses the PCIe

interfaces applying to this model as an example to test. The test contents include reading and writing

under the register transmission mode and the DMA transmission mode, and periodic transmission

between the host computer software and DSP. The experimental results show that the error rate of data

transmission process is low and the communication function of PCIe bus is implemented reliably.

Through multiple tests on the previous designed interfaces, this module is well adapted to the

communication needs of different data sizes and multiple transmission modes. The universal module

works stably and has simplified, intuitive and unified user-oriented interfaces. Its feasibility is

demonstrated by the illustration of PCIe.

5. Conclusion

The universal interface model designed in this paper is intended to provide users with a simple,

intuitive and easy-to-use universal interface module. By modelling, designing and packaging the

interfaces, the program is deeply decoupled, which improves its portability and scalability.

10

1234567890‘’“”

ATCES 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 449 (2018) 012026 doi:10.1088/1757-899X/449/1/012026

Although it is inevitable to complicate the design and sacrifice certain performance while obtaining

flexibility and scalability of the interfaces, it is acceptable for most application environment of the

detection systems. What’s more, the generalized and modular design of the detection system, as well

as the scalability and portability of the application software, are greatly improved.

Reference

[1] Song LZ, Zhou HC and XU YP, The design and development of the test system for

 numerical control equipment interfaces, Modular Machine Tool & Automatic Manufacturing

 Technique, pp 26-9, 20 Dec. 2012.

[2] Wood.B, Backplane 101: RapidIO, PCIe, Ethernet, World of Computer Automation, pp 61-9,

2010.

[3] Yu W, Zhang Y, Xu H, Huang J, Gan C and Lu W, High Performance PCIe Interface for the

TPCM Based on Linux Platform,8th Int. Symp. on Computational Intelligence and Design

(ISCID 2015),11 May. 2016, Vol.2, pp 422-425.

[4] Lam H, Kirchgessner R, George A D, Reconfigurable Computing Middleware for Application,

Portability and Productivity,24th Int. Conf. on Application-Specific Systems, Architectures and

Processors, 5-7 June.2013, Washington, DC, USA, pp 211-18.

[5] Yan H and Zhang YR, Application of design pattern to communication interface design,

Computer Systems & Applications, vol.5, pp 172-5,2012.

[6] Orzen S N, Interaction Understanding in the OSI Model Functionality of Networks with Case

Studies,9th Int. Symp. on Applied Computational Intelligence and Informatics (SACI),15-17

May.2014, Timisoara, Romania, pp 327-30.

[7] Meng S and Lu J, Design of a PCIe Interface Card Control Software Based on WDF, 5th Int.

Conf. on Instrumentation and Measurement, Computer, Communication and Control (IMCCC

2015), 11 February.2016, pp 767-70.

[8] Hou HC, Wang YW and Li H, A high-speed DMA transmission system based on PCI express

bus, Microelectronics, vol.43, pp 383-6, 20 June.2013.

[9] Zhao CY, Yan CX and Yu P, Real time scheduling of messages on 1553B bus, Optics &

Precision Engineering, vol.18, pp 732-40, March.2010.

