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Abstract. During the preliminary phase of space mission planning and design, a large quantity 

of trajectory optimization problems have to be solved. Obtaining the optimal solutions of low-

thrust trajectory is computationally challenging since the optimization problems usually 

involve an iterative numerical algorithm and the complicated numerical integration of the 

equations of motion. It is necessary to develop the rapid trajectory estimation methods for low-

thrust transfer. In this paper, a new method based on machine learning has been proposed to 

estimate the optimal interplanetary low-thrust trajectory. The minimum-propellant low-thrust 

trajectory is optimized by using the hybrid optimization algorithm, which would provide the 

high-quality training samples for machine learning. Support vector regression is adopted to 

construct and train the estimation model. Numerical simulations demonstrate that the proposed 

estimation method and the percentage errors of random test samples are all lower than 5%. 

This application of machine learning method can accomplish very efficient low-thrust 

interplanetary trajectory evaluation and it is therefore suitable to extend the design flexibility in 

the practical exploration mission. 

1.  Introduction 
Application of low-thrust propulsion system is effective and prospective for interplanetary exploration. 

Benefiting from its high specific impulse, low-thrust propulsion can decrease the fuel consumption 

significantly [1]. Some accomplished missions have profited from that, such as Hayabusa, Dawn, etc. 

The optimization of low-thrust trajectory has always been an intensive research area. Various 

techniques have been developed which are mainly categorized as indirect and direct methods [2]. Both 

methods have their strengths and shortcomings but they all require the time-consuming iteration. 

However, in the preliminary mission design, there are usually a lot of low-thrust trajectories need to be 

evaluated, which is important for the appropriate mission planning. For instance, in the selection of 

target asteroids, the fuel consumption is a key factor to determine the feasibility of missions. Therefore, 

the new methods for evaluating optimal low-thrust trajectory effectively are very desirable. 

In this paper, a novel estimation method for the optimal interplanetary low-thrust trajectory is 

developed based on machine learning. Considering the minimum-propellant transfer, support vector 

regression (SVR) is chosen to train the prediction model of velocity increment [3]. Through the 

rational data processing, the SVR-based model can predict the continuous output values efficiently for 

the given inputs. 

This paper is organized as follows. Section 2 describes the evaluation problem of optimal low-

thrust trajectory. In Sec. 3, low-thrust optimization problem is solved firstly by using numerical 

algorithms, which provides the reliable database. Then the prediction model of trajectory parameters is 
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constructed and trained based on orbital dynamics and SVR. The numerical results are shown in Sec. 4 

to verify and analyse the accuracy of proposed method. 

2.  Problem statement 

Efficient estimation for optimal trajectories is of good importance in the preliminary mission design 

and tend to be solved by the trajectory optimization methods. Some of the well-known software, such 

as MALTO and VARITOP, are all medium- or high-fidelity [4]. These optimization methods solve 

low-thrust optimization problem by the numerical iteration, leading to a complicated and time-

consuming computation. 

The low-fidelity optimization tools to quickly obtain optimal trajectory are lacking. Only a kind of 

new methods based on curve-fitting is developed for interplanetary circular-coplanar low-thrust 

transfers. Kluever given the analytic functions for computing mass-optimized trajectory using solar 

electric propulsion [5]. This method is derived by fitting the database derived from the low-thrust 

coplanar and circular transfers between Earth orbit and a target orbit. It is assumed that the transfer 

starts with a powered arc, followed by a coast arc, and finally ends with another powered arc. Then, 

the analytic function of velocity increment for optimal low-thrust transfers is fitting as 

  km / sB

TV Aa    (1) 

where A  and B  are the fit coefficients. 
Ta  is the average thrust acceleration. 

The numerical results proved that the analytic function of Eq. (1) is extremely efficient to predict 

velocity increment by comparing with the solutions from optimization algorithms. However, this 

method is only available for low-thrust circular-coplanar transfers. In terms of the general low-thrust 

transfer, the new technique must be developed to evaluate optimal trajectory. 

3.  Optimal trajectory evaluation based on support vector regression 

In this section, an evaluation method for propellant-optimal interplanetary low-thrust trajectory is 

developed to compute trajectory parameters. The general low-thrust transfer from Earth is considered 

to generate the database and support vector regression is adopted to train the evaluation model. 

3.1.  Generation of optimal low-thrust trajectory database 

Considering the minimum-propellant low-thrust transfer from Earth, the trajectory optimization 

problem is a nonlinear optimal control problem. In this paper, the Sims-Flanagan transcription is 

adopted to solve this problem [6]. This method discretizes the whole trajectory into N equal-size time 

steps. The continuous thrust of each step can be approximated by applying a bounded velocity impulse 

at the center of each time step. It assumes that the spacecraft moves in an unperturbed Keplerian orbit 

between applied thrust impulses. Figure 1 shows the diagram of a low-thrust trajectory using the Sims-

Flanagan transcription. The maximal impulse maxV  that the spacecraft can produce is determined as: 

 max

max

DT t
V

m


    (2) 

where 
maxT  is the maximal thrust magnitude that spacecraft can produce, D  is the thruster duty cycle, 

t  is the flight time of each time steps. 

Taking the ephemeris-free low-thrust transfer into consideration, the decision variables of 

trajectory optimization problem are 

  
T

0           1f f f ix iy izE E t m v v v i N       X   (3) 

where 
0E  and fE  are the eccentric anomaly of the initial and final orbit, respectively. ft is the transfer 

time. fm  is the final mass of the spacecraft. And , ,ix iy izv v v    are the three components to express 

the i th discontinuous impulse at center of time step. 
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Figure 1. Schematic of low-thrust trajectory using the Sims-Flanagan transcription. 

In order to reduce the sensitivity of the constraints to the decision variables, the whole trajectory is 

divided into two equal-time halves. The first half begins at the launch body and is propagated forward 

in time. So does the second half. Therefore, the state constraints of match point are: 

             0F B x y zx y z v v v m            X z X z X   (4) 

where , ,x y z    and , ,x y zv v v    are the three components of position and velocity vector difference 

in match points, m  is the difference of spacecraft mass in two match points. 

The hybrid optimization algorithm combining DE and SNOPT is adopted to solve optimization 

model. In detail, DE is used as a global optimizer to produce good potential solutions and then SQP as 

a local optimizer to fine tune the solution starting with the initial guess from DE. Particularly, the 

penalty function is used to handle the equality constraints. 

3.2.  Construction of evaluation model 

In this section, the evaluation model to predict velocity increment for optimal low-thrust transfer is 

built and a popular data-driven machine learning method is adopted to train the prediction model. 

To evaluate the minimum-propellant trajectory, the velocity increment V  for low-thrust transfer 

is always chosen as objective to be predicted. V  is determined theoretically and empirically by the 

propulsive parameters and the state vector of target body. Considering the ephemeris-free transfer, the 

target orbit can be described mainly by the orbital elements including semi-major axis a , eccentricity 

e  and inclination i . The transfer time is also chosen as inputs, in other words, the optimal low-thrust 

transfer with the fixed time is evaluated. Then the prediction model is expressed as 

 7 T

max sp 0:   [ , , , , , , ]ff R R a e i T I m t V     (5) 

Support Vector Regression (SVR) is used to train the prediction model [3]. It is assumed that the 

training samples set {( , ) 1,2, , }i iU x y i N   contains the inputs ix  and the corresponding output iy  

where N  is the number of samples. The basic idea of regression is to map the input 
ix  to iy  with a 

function ( )f x . In the nonlinear problem, the mapping function ( )x  is used to simplify the problem. 

Then the regression function form is presented by 

 ( ) , ( )f x x b     (6) 

where  ,  denotes the dot product. ,b  represent the weight coefficient and constant respectively. 

Theoretically, the function ( )f x  fit the training samples as flat as possible by seeking a small  . One 

way to satisfy this is to minimize 
2

,   . There are two slack variables ,i i    introduced to deal 

with other infeasible constraints. With a   for the prediction accuracy, the problem is formulated as 

Minimize 
2

1

1
( , )

2

l

i i

i

C   



    (7) 

Subject to 

,

,

, 0

i i i

i i i

i i

y x b

x b y

  

  

 





    


   
 

  (8) 
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where the constant C  denotes the penalty factor. ,i i    represent the difference between the predicted 

and true values. This problem is solved more easily by the transformation of the dual formulation. The 

Lagrangian function is shown as follows 
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  (9) 

where , , ,i i i i      are the Lagrange multipliers. This function in Eq. (9) has a saddle point with 

respect to the dual variables at the solution which is substituted by inferring the partial derivatives of 

L  with respect to the primal variables. Then the dual optimization problem is written as 

Minimize , 1

1 1

1
( )( ) ( , )

2

( ) ( )

l

i i j j i i

i j
l l

i i i i i

i i

K x y

y

   
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 



 

 

 

   



 
  (10) 

Subject to 1

( ) 0

0 ,

l

i i

i

i i C

 

 








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
  


  (11) 

where ( , )i iK x y  is the kernel function. The non-zero i  and 
i
  are also the support vectors. By 

solving the dual optimization problem, the weight coefficient   is computed 

 
1

( )
l

i i i

i

x  



    (12) 

Besides, b  can be determined by exploiting the Karush-Kuhn-Tucker (KKT) conditions.  

 
, ( )    for  0

, ( )    for  0

j i

j i

b y x C

b y x C

  

   

     

     
  (13) 

Then the mapping function can be presented in the support vector expansion as 

 
1

( ) ( ) ( , )
l

i i i

i

f x K x x b  



     (14) 

According to Eq. (14), the determination of kernel function is the key component in SVR method. 

The commonly used kernel functions include linear kernels, polynomial kernels and Radial Basis 

Function (RBF). Their corresponding formulations are 

 
linear 1 2 1 2

ploynomial 1 2 1 2
2

RBF 1 2 1 2

( , )

( , ) (1 )

( , ) exp( )

p

K x x x x

K x x x x

K x x x x


 

  

  (15) 

Each kernel function has distinct characteristic because of its special and inherent formulation for 

computing the predictors which should be compared as the problem. Finally, to determine the suitable 

training sample set, the Mean Square Error (MSE) is chosen as objective to present the prediction 

accuracy. The lower MSE means the more accurate predicted values and the number of training 

samples can be determined by limiting an acceptable MSE. 

4.  Numerical results 

To verify the efficiency of proposed method, the evaluation model is constructed to compute trajectory 

parameters. Considering low-thrust transfer from Earth’s orbit with zero excess velocity, the model in 

Eq. (5) is trained based on SVR to predict the total velocity increment. To guarantee the performance 

of prediction, the seven input parameters are generated following a uniform distribution in the input 

domain. Without loss of generality, the range for each parameter is set as table 1. 
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Table 1. Ranges of seven input parameters. 

Input parameters ranges 

Semi-major axis a (AU) 2.1~2.5 

Orbital eccentricity e  0~0.3 

Orbital inclination i  (deg) 0~20 

Maximal thrust magnitude 
maxT  (mN) 300~500 

Thrust specific impulse 
spI  (s) 2500~3500 

Initial mass of spacecraft 
0m  (kg) 1000~2000 

Flight time 
ft  (days) 1000~1500 

For the inputs from table 1, the optimal low-thrust trajectory database used for SVR is obtained by 

using the Sims-Flanagan transcription and DE-SNOPT. Then, SVR is adopted to train the prediction 

model. The prediction model mainly depends on the determination of kernel function and training 

samples set. Choosing 200 test samples randomly, figure 2 shows the relationship between MSE and 

training samples set size for three kernels in Eq. (15). The degree of polynomial kernel is set to 3. 

As shown in figure 2, it is obvious that polynomial kernel function performs better for this 

prediction problem. In addition, with the increase of training samples set size, MSE of test samples 

decreases and tend to be stable after fluctuation for all three kernels. According to this selection 

criterion, the number of training samples for polynomial kernel function are chosen as 800. 

 

Figure 2. Relationship between MSE and number of training samples for three kernels. 

To show the prediction deviation more clearly, the percentage error (PE) between the predicted 

outputs and optimal outputs of test samples is chosen for the prediction of SVR-based model. For 200 

random test samples, the PE results of polynomial kernel are exhibited by histograms in figure 3. 

 
Figure 3. PE of polynomial kernels.                              Figure 4. PE of RBF kernels. 
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It can be seen that the maximal PE is less than  5%. The SVR-based model is capable of 

predicting the velocity increment for interplanetary low-thrust transfer with sufficient precision. 

Comparatively, figure 4 shows that of RBF kernel function. The distribution of PE in figure 4 is more 

dispersive and the number of PE over  3% is more than that in figure 3. Note that the generation of 

one optimal low-thrust trajectory by using hybrid optimization algorithm requires about 2 minutes, 

which means obtaining the 200 test samples takes about 6.67 hours. While the SVR-based prediction 

model can accomplish the computation like the analytical function. 

By using the prediction model from polynomial kernel for low-thrust optimal transfer, we set the 

asteroid mission to Vesta for evaluating optimal velocity increment V . Table 2 lists the predicted 

V  to Vesta for various inputs. Furthermore, it also shows the global optimal V  calculated by 

numerical optimization algorithm. As shown in table 2, the PE is varied from -0.59%~1.54%. The 

corresponding deviation of V  is less than 157 m/s. Therefore, the evaluation method based on SVR 

is really efficient in the preliminary low-thrust mission design. 

Table 2.  Prediction accuracy of propulsion systems for low-thrust transfers to Vesta. 

maxT , mN spI , s 
0m , kg ft , days 

Optimal 
V , km/s 

predicted 
V , km/s 

PE of 
V , % 

300 2500 2000 1450 10.574 10.702 1.21 

350 3500 1000 1400 10.187 10.127 -0.59 

400 3000 1000 1050 10.245 10.234 -0.11 

450 2500 1500 1200 10.182 10.226 0.43 

500 3500 1000 1400 10.183 10.340 1.54 

500 2500 1500 1200 10.182 10.156 -0.26 

5.  Conclusion 

In this paper, a novel approach is developed for evaluating interplanetary optimal low-thrust trajectory 

quickly and efficiently. Considering the minimum-propellant low-thrust transfer, the SVR-based 

model can predict optimal velocity increment accurately. Comparing to the numerical optimal solution, 

the percentage errors of 200 random test samples are all less than 5%. Thus, the proposed SVR-based 

models are powerful tools for evaluation of optimal low-thrust trajectory, especially in the case that a 

large number of candidate trajectories are considered. The introduction of machine learning also 

provides an advantage to reveal the relationship of trajectory parameters for low-thrust transfer, which 

makes it well suited for performing preliminary interplanetary low-thrust mission design. 
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