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Abstract. Causes of defects that can lead to the turbine rotor overspeed and subsequent 

hazardous consequences are considered. Methods of preventing unacceptable overspeed and 

confirmation of the sufficient strength of the turbine rotor are analyzed. Particular attention is 

paid to the developed method of calculating burst speed of the rotor. A comparison of the 

numerical and experimental data on basis of relation between radial displacements during spin 

tests, burst speed, high-speed image acquisition, fracture origin and fracture confirms 

possibility to use the developed  method of calculations. The presented method allows to adjust 

the value of a disc rotation rate during certification spin tests to ensure that a disc with the 

worst mechanical properties will not burst in operation and to take into account differences in 

the design and loading conditions between the disc for spin tests and disc for operation. 

If the identification of model’s material parameters was performed based on disc’s tensile tests 

and spin tests, then for a disc of another design from the same material only calculations can be 

used. 

1. Introduction. 

Fracture of the turbine rotor during overspeed is one of the most potentially hazardous defects of a gas 

turbine engine (GTE). Only in rare cases (for some auxiliary engines) it is possible to reliably exclude 

hazardous consequences (in particular, escape of fragments with high kinetic energy through the 

engine cases; uncontrolled fire; failure of engine mounts, leading to separation of the engine from the 

aircraft) when the turbomachine rotor (disc, blisk, bling, drum, centrifugal wheel, hereinafter referred 

to as a disc) fails. 

This article examines some issues related to providing and confirming load-carrying capacity of a 

disc, taking into account possible overspeed. Turbomachine disc must have sufficient strength to 

withstand both normal operation conditions and conditions when maximum permissible operating 

speed is exceeded, including conditions after failure of the most critical component with respect to 

rotor overspeed or system or a combination of this failure with any failure of a component or system, 

which cannot be detected during a routine preflight check or during normal flight operation. It should 

be confirmed that even a disc made of a material with the combination of most adverse material 

properties and dimensional tolerances has sufficient strength [1-3]. 

2. Causes of a turbine rotor overspeed and measures to prevent unacceptable overspeed. 

The turbomachine disc can experience overspeed, for example, due to a defect in engine control 

system, which results in an increased amount of fuel being supplied to combustion chamber; due to 
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failure of a reduction gear connecting turbine rotor and power consumer; failure of fan’s 

(compressor’s) impeller, etc. However, in practice, the most difficult task is to confirm sufficient 

strength of the turbine disc after breaking kinematic connection with a power consumer as a result of 

failure, displacement or disconnection of shafts. In this case, the overspeed of the turbine disc before 

its failure can occur in a fraction of a second and reaction speed of a pilot does not allow to take any 

action in such a short time. At the same time, when the disc is fractured under the conditions of 

overspeed, the kinetic energy of the fragments is especially high. Therefore, in accordance with 

requirements of airworthiness standards [1-3], fracture, disconnection or displacement of shafts should 

not lead to hazardous failure [4-6]. Experience shows that failure of a shaft system can occur due to 

various reasons – failure of rotor’s coupling parts, shaft’s manufacturing flaws (including material 

defects); corrosion of the shaft’s material (including stress corrosion); overheating of the shaft’s 

material due to fire (for example, when fuel mixes with oil in a fuel-oil heat exchanger), due to a 

breakthrough of hot gas into the shaft cavity, due to loss of spline coupling lubrication, due to the shaft 

contact with adjacent parts (including, for example, a result of flexural deformations, a significant 

imbalance of the rotor after blade-off, a failure of a bearing or other part adjacent to the shaft), 

including event, when load reduction device has been activated to reduce the load after blade-off 

conditions; fatigue (as a result, for example, of flexural or torsional oscillations, particularly, when 

pressure in the fuel system of the engine fluctuates), etc. 

Fracture of a high-pressure turbine (HPT) shaft usually immediately leads to surging; so HPT rotor 

overspeed due to the shaft failure is limited. Nevertheless, the absence of a hazardous failure should be 

confirmed in the case of HPT shaft failure. More dangerous are shaft failures in intermediate-pressure 

turbines (in three-shaft engines), low pressure turbines (LPT), free power turbines, and turbounits 

(turbostarters, turbo-generators, turbo-refrigerating units).  

To prevent a hazardous effect due to shaft fracture, a set of measures is usually used, including 

prevention of a defect, which can lead to shaft failure; employment of diagnostic methods of engine 

technical condition, which allow identifying such defects at an early stage of their development; 

decrease in criticality of defect development. For example, to prevent failure of LPT shaft, a large set 

of measures is used, selected on the basis of FMECA analysis including provision of high quality shaft 

manufacturing (like for the main engine parts); substantiated choice of coatings and lubricants for 

shafts and adjacent parts (taking into account possible corrosion); provision of sufficient shaft strength 

under operating conditions, including confirmation of the shaft's durability taking into account 

possible defects and, possibly, limitation of the designated service life; elimination of the possibility of 

hazardous overheating of a shaft material due to friction of the shaft with other parts by installation of 

a bumper between high and low pressure rotor shafts, application of heat-resistant coating of LPT 

shaft; installation of a bearing on an intermediate part, and not directly on the shaft; selection of 

pressure distribution, which excludes possibility of hot gas breakthrough into the shaft cavity; 

elimination of the possibility of fuel and oil mixing; application of rotor vibration dampers; etc. 

Experience shows that probability of turbomachine shaft failures exceeds extremely low 

probability, and causes of the shaft failures are very numerous.  Therefore, the design of the engine 

should ensure that turbine rotor overspeed is limited, and that sufficient load-carrying capacity of the 

rotor, taking into account possible overspeed, must be reliably confirmed. 

Design solutions that limit a turbine engine’s rotor overspeed in an event of shaft failure, are shown 

in Table 1. 

Table 1. Design solutions that limit turbine rotor overspeed in an event of a shaft failure 

Solution Advantages Disadvantages and issues 
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Ranking of integrity in a "blade 

airfoil – blade root – disc" 

system, which ensures the 

initial fracture of the blades in 

their root section during rotor 

overspeed 

Effective regardless 

of at which section 

shaft was fractured 

(to the left or to the 

right of a thrust 

bearing) 

It is necessary to prevent escaping 

through engine case fragments, formed 

during fracture of multiple blades at 

overspeed conditions  

High cost of subsequent engine repairs 

Fitting a rotor turbine onto 

stator after axial downstream 

displacement of the rotor as a 

result of shaft failure (for 

example, using banana-shaped 

nozzle blades to arrange 

guaranteed connection  of 

nozzle vanes and rotor blades 

and subsequent (mass fracture 

"meshing") of the blades) 

Relative simplicity Effective only when shaft is fractured at 

the right side of thrust bearing 

Time required for rotor displacement in 

axial direction to contact a stator should 

be much less than time to rotor fracture 

due to overspeed (a fraction of a second). 

Guaranteed fitting of the rotor on the 

stator is necessary, which eliminates 

formation of a sliding bearing and 

provides dissipation of the rotor energy 

due to friction between rotor and stator, 

as well as fracture of  blades and vanes  

Difficulty of determining possible 

rotation rate during overspeed (without 

special test) 

High cost of subsequent engine repair 

Cutting turbine rotor blades at 

rotor displacement after shaft 

failure (usually used in single-

stage turbines) 

Relative simplicity The same as with axial displacement of a 

rotor with meshing of rotor blades and 

nozzle vanes 

Possibility of nonlocalized rotor 

fragments escaping case (for example, 

outside of turbo-starter’s radial armor 

protection)   

Mechanical system for fuel cut-

off after shaft failure  

Possibility of 

ensuring required 

speed 

Impossibility of monitoring system’s 

workability at service conditions 

Relatively good 

condition of the 

engine after an 

event  

Electronic system for abrupt 

increase of fuel supply for 

instantaneous surging after 

shaft failure 

Relatively good 

condition of the 

engine after an 

event 

Effective only in some cases (to prevent 

the intermediate-pressure turbine rotor 

overspeed) 
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Possibility of 

monitoring system’s 

workability at service 

conditions 

It is needed to test the electronic system's 

performance under external influences 

(EMC, etc.) 

It is needed to prevent the engine shut 

down on a false signal 

Electronic system for fuel cut-

off after shaft failure 

Relatively good 

condition of the 

engine after an 

event 

Reliability and efficiency depend on the 

choice of type, number, layout of 

sensors, choice of structure (number of 

channels) and algorithm of the system 

Possibility of 

monitoring system’s 

workability at service 

conditions 

It is needed to test the electronic system's 

performance under external influences 

(EMC, etc.) 

Difficulty of determining possible 

rotation rate during overspeed 

Required limit of a rotor’s rotation rate 

(speed) is not always ensured 

When using a system based on the meshing of rotor and stator blades of an engine turbine in an 

event of axial displacement of the turbine rotor after the shaft fracture, it should be shown that the 

shaft fracture to the left of the thrust bearing (in which case the rotor is not displaced in the axial 

direction) is an extremely unlikely event. In this case, all possible causes of shaft failure should be 

considered. Additionally, it is important that, in an event of axial displacement of the turbine rotor, 

contact between engine’s rotor and stator occurs at airfoils, otherwise a sliding bearing may form and 

rotor’s overspeed will continue. 

The electronic system is usually realized as a separate unit from the main control system and is 

provided with the power supply capability from the backup source. To increase reliability of the 

engine’s turbine’s electronic overspeed protection system, a two-channel system with two sensors in 

each channel is used. The choice of sensors’ location is also important for ensuring their high 

reliability. Two-channel solution allows the engine to continue to operate when one of the system’s 

channels fails, which is important for ensuring reliability centered maintenance (RCM). 

Sometimes protection against unacceptable overspeed of an engine's turbine disc should be carried 

out by combined use of various solutions – for example, by combined use of an electronic fuel cut-off 

system, and in conditions where the speed of this system may not be sufficient – a system based on 

integrity ranking of elements in the "blade-disc" system. 

In some cases, to confirm the absence of a hazardous failure in an event of engine’s shaft fracture, 

it is necessary to carry out specific expensive engine test with shaft cutting. However, more often 

confirmation of the sufficient strength of a turbine disc under conditions of its possible overspeed is 

carried out on the basis of a spin testing of the disc and (or) a calculation of disc burst speed. 

An estimation of possible rotation rate of a disc during overspeed is an independent task, which is 

not considered here. The method for calculating burst disc speed is considered below. 

3. Numerical simulation of a disc burst speed 

3.1. Description of a model 

The finite element method (FEM) is the most effective tool for calculating the stress-strain state of a 

disc under conditions of overspeed. In papers [7-8], possibilities of using FEM for the calculation of 

plastic deformations in turbine discs GTE using the theory of plasticity are shown and a satisfactory 
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conformity between calculated and experimental values of a disc’s burst speed is obtained (the 

difference was not more than 6%). 

The basis of the calculation method is a step-by-step calculation of a disc using FEM with an 

increase of the rotation rate. We consider active (unidirectional) loading, in which hardening of the 

material is isotropic. We consider loading of the disc as a quasi-static process. Such assumptions are 

advantageous for reducing the time of the iterative solution. In this case, the parameter characterizing 

hardening of the material must be obtained at a deformation rate corresponding to the deformation rate 

of the disc during overspeed. 

The process of transition of a disc from an elastic to an elastoplastic state performs step-by-step. 

First, the most stressed local zones (holes, fillets, slots, etc.) undergo plastic deformation, and then the 

plastic deformation extends further into the hub and web of the disc. Considering that the time it takes 

the disc to overspeed under operating conditions is a fraction of a second, we assume isothermal 

deformation process of the disc, i.e. neglected both by the internal release of heat due to plastic 

deformation, and by heating of the disc from external sources. 

Taking into account the type of the disc’s loading, we use isothermal theory of plasticity with 

isotropic hardening. Total deformation increments are split into elastic {    } and plastic deformation 

{    }: 

*  +  {    }  {    }  (1) 

The increments of the elastic strain components are related to the increments of the stress 

components {Δσ} by Hooke's law through the matrix of elastic moduli [D]: 

{    }  , -  *  +  (2) 

Plastic deformations are determined by introducing three characteristics of the material’s nonlinear 

behavior: the yield function f, which characterizes conditions of plastic flow during complex stress 

state, the flow rule determining the direction of development of plastic deformation, and the hardening 

function   ̅, which determines how f varies during plastic flow. 

During plastic flow stresses must be on the loading surface, i.e. two conditions must be fulfilled 

simultaneously: 

 (* +  ̅)  0, (3) 

   0. (4) 

Increments of the plastic deformation components with the use of associative plasticity are 

connected through the derivatives of the yield function f with respect to the corresponding stress 

components: 

{    }   {
  

  
}  (5) 

Where 

λ ‒ non-negative parameter that determines the value of the increment of the plastic flow. 

In the practice of disc numerical simulation, the yield function with a Mises yield condition is 

widespread: 

  .
 

 
,(     )

  (     )
  (     )

 -/
   
  ̅( ̅    ). (6) 

Where 

          principal stresses; 

 ̅( ̅    )  function of material hardening, which depends on the accumulated plastic deformation 

 ̅   and temperature  . 

Assuming that this function is independent of the type of stress state, we use tensile curves at 

different temperatures. Usually  ̅( ̅    ) is given in the form of piecewise linear functions, and the 

intermediate values are determined by linear interpolation. 

The justification for using (6) is the multiple validations performed for various classes of metallic 

materials. However, calibration of this model during the spin rig testing of an aircraft’s GTE turbine 

disc made from Udimet 720 at normal temperature [9] have shown that the best correspondence of the 
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numerical and experimental data is achieved when using Tresca yield condition, which can be 

represented in yield function as: 

  
 

 
,(     )  (     )  (     )-   ̅( ̅

    ). (7) 

To study the influence of the yield condition on the burst speed, we used the non-quadratic yield 

function with Hosford yield condition [10]: 

  .
 

 
,(     )

  (     )
  (     )

 -/
   
  ̅( ̅    ). (8) 

Where 

a – parameter. 

Tresca (a=1) and Mises (a=2 or a=4) yield conditions are special and limiting cases of the Hosford 

yield condition [10]. For a> 4, the yield condition lies between the limit curves and tends to Tresca 

yield condition for а→∞. 

Calculation of plastic deformations within each iteration is performed using the return mapping 

algorithm [11]. The main problem of calculating plastic deformations under overspeed conditions is a 

reliable determination of material model’s parameters, including yield condition, hardening function 

and failure criterion. These model’s parameters can be identified from tensile testing of smooth 

specimens and spin testing of a model disc of the same material [12-13]. For the purpose of 

experimental adjustment of the method, two identical workpieces of a disc made of heat-resistant steel 

were manufactured. The disc for burst spin test was made from the first workpiece, and from the 

second - ten cylindrical specimens with a diameter d0=6 мм, cut from different areas of the disc. 

3.2. Identification of material model parameters 

3.2.1. Identification from tensile test. The tensile test was carried out in accordance with ASTM E8M 

Standard at normal temperature at a rate of 0.3 mm/min with the installation of an extensometer on the 

body of the specimen. 
Based on mean values of mechanical properties, the tensile curve is shown in Figure 1a (the dashed 

line shows the area after the beginning of the necking, which is not used in calculations). True stress 

vs. true plastic strain diagram (Figure 1b) was determined assuming a constant volume of material 

before and after plastic deformation, based on the following relations: 

       (   ), (9) 

     
  

   (   )           (10) 

  

  

a) b) 

Figure 1. Average tensile curve (a) and true stress vs. true plastic strain diagram (b) 

We used true stress vs. true plastic strain diagram in the calculations as a hardening function 

 ̅( ̅  )       (     
  

). The dashed l function to ensure the convergence of the solution. Uniform 
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plastic elongation    
  

 (as a part of uniform elongation) was considered a critical strain, after which 

burst of the disc begins.ine in Figure 1b shows a linear extrapolation of the hardening  

3.2.2. Identification from burst spin test. We carried out the burst spin test of the disc (Figure 2) at 

normal temperature with increasing rotation rate linearly [14]. Loading rates of the disc and samples 

were approximately equal. During the test, we recorded the rotation rate and elongation of the outer 

diameter of the disc by two linear eddy-current sensors (using two sensors located at diametrically 

opposite points). 

 

Figure 2. Drawing of the model disc (dimensions are in mm, z - number of orifices) 

Disk burst at a rotation rate ω
EXP 

= 24282 rpm, while the radial displacement of the outer diameter 

of the disc at the time of burst was u
EXP

=2.2 mm. Photography of disc after disk is shown in Figure 3. 

Fracture origin of the disc occurred along a cylindrical cross-section with the formation of a necking. 

Fracture of the disc along the meridian cross-sections passing through the holes is secondary. 

We performed simulation of the disc overspeed via MSC. Marc on the disc sector with an angle 

α=15° (α=360/z). During formation of the finite element mesh, we took into account real geometric 

dimensions of the disc after manufacturing, determined by the results of 3D scanning. We divided the 

disk sector by first order hexahedral finite elements. On the boundaries of the sector, we set 

circumferential displacements to zero. Also, we fixed the model in one node in the axial direction to 

prevent it from moving as a rigid body. The values of the density and the Poisson's ratio are taken 

from the reference data. 

The increase in the rotation rate was carried out with an even step: the first step corresponded to a 

rotation rate of 15,000 rpm; at the next steps rotation rate increased by 300 rpm. 

A comparison of the results of the disc radial displacement calculations along the outer diameter 

under the condition of the Mises yield condition and the close to the Tresca yield condition (a=2 and 

a=100 in Eq. (8)), with experimental data is shown in Figure 4. In a range of rotation rates from 0 to 

18000 rpm, the disc is deformed elastically, and correlations between calculated/experimental 

displacements of the disc coincide in this range. After reaching rotation rate of 18000 rpm, a deviation 

of the radial displacements from the elastic line is observed, which indicates elastoplastic deformation 

of the disc. Numerical displacements obtained with Mises yield condition and experimental 

displacements have a similar pattern over the entire range of rotation frequencies. For this material, 

Mises yield condition ensures better conformity of calculated and experimental data on radial 

displacements than Tresca yield condition. In this case, the accepted hypotheses about isotropic 

hardening and the associated plasticity can be considered acceptable. 

 

A 

Fracture  

origin 

A 
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Figure 3. Photography of disc after burst Figure 4. Experimental and numerical (a=2 

and a=100) results of disc radial displacement 

Distributions of the plastic strain intensity    
  

 of the disc at rotational rates of 23400, 23700 and 

24000 rpm are shown in Figure 5. Plastic deformation reaches a maximum value in the disc web in the 

area, which corresponds to the fracture origin. At a rotation rate of 23400 rpm, the value of plastic 

deformation was 6.0% (see Figure 5a) and almost reached a critical strain    
  

= 6.3 %. Given the 

presence of a necking in the disc after the tests, we can assume that the fracture of the disc occurred 

with higher    
  

. At a rate of 24000 rpm (see Figure 5c), plastic deformations are already distributed 

over the entire section A-A. 

 

 

 

 

 

a) 23400 rpm b) 23700 rpm c) 24000 rpm  
Figure 5. Distribution of the plastic strain intensity in a disc at different rotation rates 

If we take into account that at the last loading step the calculated value of the radial displacement 

of the disc (ur=2,18mm at 24000 rpm) is close to the experimentally determined value of the radial 

displacement of the disc at the moment of burst (u
EXP

=2,2 mm at ω
EXP 

= 24282 rpm, see Figure 4), 

then the limiting state at which the disc burst, can be considered an attainment of plastic strain 

intensity equal to critical strain in an entire unsafe cross-section: 

                        
  

    
  
  (11) 

3.2.3. Discussion on the results 

According to (11), the burst speed of the disc is ω
NUM(1) 

= 24000 rpm, and the difference between 

numerical and experimental burst speed − ∆
(1)

=1 %. The fracture criterion (11) is not local. An 

𝛆𝐁
𝐩𝐥

 

А 
А 

6 % 8,3 % 11,2 % 
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additional justification for this fact is the detection of a necking at a radius R=55 mm after burst of the 

disc. 

The smooth specimen necking is determined by the reduction of diameter: 

   
     
  

   √     (12) 

Where 

dk – diameter of the specimen in the neck area after burst; 

ψ – reduction of area. 

The web disk necking is determined by the reduction of web: 

   
     
  

 (13) 

The average value of reduction of diameter is ψd=0.26, аnd reduction of web − ψh=0.21. Thus, the 

change in the dimensions of the specimen and the disc in the plastic deformation localization zone 

turned out to be sufficiently close to each other. 

In practice, local fracture criteria are used to calculate burst speed, which are presented in papers 

[6-9, 15, 16]. For example, if as the fracture criterion we consider the equality of the maximum plastic 

deformation and critical strain: 

          
  

    
  
  (14) 

then the burst speed ω
NUM(2) 

= 23450 rpm and the difference between numerical and experimental burst 

speed − ∆
(2)

=3.5 %. 

To estimate the value of burst speed, it is often used average radial stress criterion [17]: a disc will 

burst when average radial nominal stress equals the tensile strength of the material. As well as for the 

average hoop stress criterion [18], one of the main drawbacks of the method is the lack of possibility 

to take into account the plastic characteristics of the material. According to this criterion 

ω
NUM(3)

=22400 rpm and ∆
(3)

=8 %. 

Thus, to calculate the burst speed of a disc made from steel, it is preferable to use the fracture 

criterion (11), where plastic deformation is determined based on the isothermal theory of plasticity 

with the Mises yield condition and isotropic hardening. The advantage of the method is also detection 

of the fracture origin and the critical disk section. 

Using the method described above, for a number of model disks and full-size discs of various 

designs made from steels, titanium and nickel alloys tested at normal and operating temperatures, we 

performed a comparison of the numerical and experimental data on basis of relation between radial 

displacements during spin tests, burst speed, high-speed image acquisition, fracture origin and fracture 

mode analysis. Based on the results of the research, we gave recommendations for disc burst speed 

analysis. It should be noted that for the disc made from nickel based superalloys Udimet 720 and 

EP741NP, for which fracture of the specimens in the tensile test occurs without necking, it has been 

shown that the use of the Tresca yield condition [3,10] and the local fracture criterion (14) is 

advantageous. 

When calculating the load-carrying capacity of a disc, it is necessary to take into account the most 

unfavorable operating conditions of the engine during overspeed, the unfavorable combination of 

dimensional tolerances and the statistically minimum values of the material’s mechanical 

characteristics [1-3]. The presented method also allows to adjust the value of a disc rotation rate 

during certification spin tests to ensure that a disc with the worst mechanical properties will not burst 

in operation and to take into account differences in the design and loading conditions between the disc 

for spin tests and disc for operation. 

If the identification of model’s material parameters was performed based on disc’s tensile tests and 

spin tests, then for a disc of another design from the same material only calculations can be used. 
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