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Abstract. Porous films of anodized aluminum oxide with pore sizes of 50-60 nm were 

obtained. Silver nanoparticles in porous alumina have been synthesized by the method of 

controlled single-jet crystallization. The synthesis of gold nanoparticles in the pores was 

carried out by the reduction of HAuCl4 with NaOH alkali in the pores of aluminum oxide. 

 

1. Introduction 

Due to theunique porous structure, the parameters of which (diameter, length and distance between 

neighboring pores) can be varied during the synthesis, porous alumina films can be used as inorganic 

membranes [1–3], calibration grids, a templating material for the synthesis of nanowires or nanotubes 

with a controlled diameter and high geometric anisotropy [4–6], as well as 2D photonic crystals [7, 8]. 

At present, the greatest use of porous aluminum oxide films has been found as matrices for the 

synthesis of ordered arrays of anisotropic nanostructures of various compositions. Magnetic materials, 

such as Fe, Co, Ni, obtained in the channels of porous Al2O3, are promising for the creation of a 

magnetic information storage medium. In this case, the possibility of changing the geometric 

anisotropy of nanostructures by varying the charge missed during the electrodeposition of the metal 

makes it possible to control the magnetic properties of nanowires [9]. 

Membranes of anodic aluminum oxide are a promising material for the creation of high-tech 

devices operating at elevated temperatures [10]. The coefficient of thermal conductivity of aluminum 

oxide films is 1.6 W/m×K, which is much higher than the thermal conductivity of polymeric materials 

and glasses used as solid-state matrices for dye lasers [11–13]. If the pores are filled with laser dyes, 

then such a system can be used as an active medium for a tunable laser. 

 

2. Method of experiment 

The following reagents were used to prepare porous alumina films: Al (0.5 mm thick sheet, 99.99%), 

oxalic acid (COOH)2, H3PO4 conc., CrO3, CuCl2, HCl, ethanol C2H5OH (96%). In order to increase the 

size of Al crystallites, remove microstresses, and then achieve better ordering of the pores, aluminum 

substrates were annealed in air for 10 hours at 550 °C in a muffle furnace. For the preparation of 

solutions, double filtrated and deionized water is used on the AquaMax 360 Basic water purifier. The 

specific resistance of water was 18.2 MΩ / cm. 

An important characteristic of metallic aluminum, which affects the process of ordering of a porous 

structure, is the roughness of its surface. The alignment of the aluminum surface was carried out by 

electrochemical polishing in a pulsed mode. Before polishing, the surface of the aluminum plate is 

cleaned with acetone. For the electrochemical polishing of the aluminum surface, an electrolyte is 
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used, which has the following composition: CrO3 (185 g/l) and H3PO4 (1480 g/l.). The aluminum 

plates were immersed in a 500 ml heat-resistant dish with the prepared solution at an electrolyte 

temperature of 80 °C and mixed with a magnetic stirrer (IKAMAG RET control-vise). For 

electrochemical polishing the following parameters were chosen: voltage - 11-13 V, current - 1.2 A. 

The polishing time of the aluminum surface lasted 15-20 minutes. Quality control of electrochemical 

polishing was evaluated by the appearance of the aluminum surface. The temperature of the mixer was 

80 ° C, and the temperature of the solution was controlled by a thermocouple. A plate of aluminum (of 

the same composition and larger in area) was attached to the negative electrode, and a plate of 

aluminum for polishing was placed on the positive electrode. The current source was Agilent 

technologies N8740A 150V, 22A, 3300W. The following parameters were set: voltage limits of 11-12 

V, current 1.2 A. After that, the samples were washed in distilled water and dried in air. It is noted that 

an increase in the duration of electropolishing leads to smoothing of the unevenness, but is 

accompanied by a significant dissolution of aluminum and a decrease in the thickness of the metal 

plate. Anodic oxidation of aluminum was carried out in a two-electrode electrochemical cell using 

direct current sources. The resulting porous aluminum oxide matrices were separated from the 

aluminum base by selective dissolution of the latter in a solution of 0.25 M CuCl2 in water.  

Synthesis of silver nanoparticles in porous alumina was carried out by the method of controlled 

single-jet crystallization. The method is based on the reduction of the silver ammoniac complex by a 

reducing agent, which was formic acid. To 25 ml of an aqueous solution of silver nitrate with a 

concentration of 0.4%, 1 pea of NaOH is added. The solution becomes muddy. After deposition of 

silver on the bottom of the glass, gently drain the top of the solution and wash 2-3 times with distilled 

water. To the resulting precipitate add 5 ml of deionized water. Then 400 µl of concentrated ammonia 

are added to the resulting solution and mixed, and the solution becomes clear as a result. In the 

resulting solution, preliminarily heated to 60 °C aluminum oxide film is dropped and 400 µl of formic 

acid is added. The reaction is carried out for 4-5 minutes, then the liquid is drained, the alumina film is 

washed with distilled water and dried at a temperature of 60 °C. The synthesis of different 

concentrations of nanoparticles in the film was carried out by varying the volume of formic acid added 

during the reaction. 

For the synthesis of gold nanoparticles (AuNPs), we used solutions of HAuCl4 (1 ml of Au solution 

per 9 ml of deionized water) and NaOH (1g NaOH per 25 ml of water). For the synthesis of AuNPs in 

aluminum oxide, the pH of the gold solution (initial pH = 1.5-1.95) it is necessary to bring to 10, 

adding a solution of NaOH (1N) dropwise. Then, the porous alumina film is immersed in a solution of 

HAuCl4 (pH = 10) and heated at 80 °C for 2 hours. After this time, the color of the film changes from 

white to raspberry-pink (if the HAuCl4 solution is concentrated, respectively, violet). This is a sign 

that the gold nanoparticles have formed in the pores. The synthesis of different concentrations of 

nanoparticles in the film was carried out by varying the volume of NaOH solution added during the 

reaction. 

The synthesized nanostructures were studied using a Tescan Mira 3 LMU microscope at a 15 kV 

accelerating voltage and a working distance of 7 mm. Information on the local chemical (element) 

composition was obtained using an energy-dispersive detector, excited by fast electrons of 

characteristic X-ray radiation  

 

3. Result and discussion  

Figure 1 shows the current characteristic for the production of an oxide layer in oxalic acid. The 

formation of the first pores in the oxide film is most likely to occur in some defective places, for 

example, at the boundary of the crystallite, in the film cracks. Simultaneously with the growth of 

pores, the alumina layer begins to grow from the outer part of the film at the film-metal interface, the 

individual cells of which have the form of a hemisphere. 

From these studies, it was found that changes in the current density are observed throughout the 

anodization process. There are three stages of changes in the current dependence:  

Stage 1. When the current is turned on, there is a sharp increase in the current density due to the 

presence of a thin oxide film on the aluminum surface. At this stage, the thickness of the oxide layer 

increases. 
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Figure 1. Current characteristic of the process of anodizing 

aluminum. 
 

Stage 2. The value of the current density starts off fall. At this stage, the porous structure of 

anodized aluminum is formed, followed by an increase in the pore depth. 

Stage 3. The value of the current density passes through a maximum and the current decreases. 

This occurs in connection with the achievement of the ultimate thickness of the porous alumina layer 

and the rupture of the upper pore layers.  

SEM images of transverse cleavages of the samples and the results of determining the content of 

chemical elements on the surface of aluminum oxide are shown in figures 2 and 3, respectively. It can 

be seen that nanoparticles of silver (figures 2 a, 3 a) and gold (figures 2 b, 3 b) are formed on the walls 

of pores of nanoporous alumina. 

 

 

(a)(b) 

Figure 2. SEM image of the transverse cleavage of an aluminum oxide film. 

Figure 4 a shows absorption spectra of silver nanoparticles of different concentrations in a film of 

nanoporous alumina. It is seen from the figure that the absorption band of silver nanoparticles in the 

matrix has a maximum at a wavelength of 387 nm. The appearance of an absorption band with a 

maximum at wavelength 387 is indicative of the formation of nanoparticles in pores. The half-width of 

the spectrum is 43 nm, with a change in the concentration of nanoparticles in the film it was 36 nm. 

The same figure (figure 4 b) shows the absorption spectra of gold nanoparticles of different 

concentrations in a film of nanoporous alumina. The appearance of an absorption band in porous 
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aluminum with a maximum at a wavelength of 534 nm is indicative of the formation of gold 

nanoparticles in pores. It can be seen from the figure that the absorption band of gold nanoparticles in 

the matrix has a maximum at a wavelength of 534 nm. The half-width of the spectrum is 52 nm, with a 

change in the concentration of nanoparticles in the film, the half-width of the absorption spectrum was 

42 nm. 

 

 
(a) (b) 

Figure 3. Energy dispersive spectrum of elements on the surface of an aluminum oxide 

film. 
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(a) (b) 

Figure 4. Absorption spectrum of silver (a) and gold (b) nanoparticles in the 

matrix of nanoporous alumina. 

 

4. Conclusion  

Thus, as a result of the experiments, porous films of anodized aluminum oxide with pore sizes of 50-

60 nm were obtained. The synthesis of silver nanoparticles in porous alumina was carried out by the 

method of controlled single-jet crystallization. The synthesis of gold nanoparticles in pores was carried 

out by restoring HAuCl4 with alkali NaOH in the presence of a porous alumina film. 
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