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Abstract. This article provides a brief review of the work and discussion of the problems 

related to the discrete structural and generalized continuum models of the Cosserat lattices 

consisting of particles of finite size and with complex connections. A simple Cosserat lattice, a 

Cosserat lattice with auxetic properties, and a chiral microstructure are considered. Various 

approaches to constructing a hierarchy of multi-field models for materials having a square 

lattice are presented. These approaches are based on the introduction of macrocells of different 

types and, accordingly, on the use of a larger number of fields describing deformations. A 

combination of micropolar and multi-field theories with the development of models is 

discussed. 

 

1. Introduction 

In the ordinary theory of lattices and in classical models of the mechanics of continuous media, 

deformations of solids are characterized only by translational displacements of particles. However, in 

some cases, the correct description of the deformations requires a consideration of rotational degrees 

of freedom. In particular, this applies to solids composed of rigid rotating elements, as well as solids 

with a beam microstructure. The description of deformation of such bodies, as granular media, 

complex molecular lattices, nanomaterials, biomaterials, stone masonry, beam lattice constructions, 

liquid crystals etc, needs taking into account the rotation of their constituent structural elements. 

Beam lattices and their models play an important role in the interpretation and application of the 

micropolar theory [1, 2]. Lattices with a beam-like microstructure are used in the mechanics of 

metamaterials for development of auxetic and chiral structures [3-5]. The models of lattices composed 

of particles of finite size and with complex connections [6-9] are discussed in this article. 

 

2. Discrete and micropolar models of materials, taking into account the rotational degrees of 

freedom of particles 

We consider the Cosserat square lattice, i.e., the lattice composed of particles with positions 

determined not only by the displacements nu  and nv , but also by the rotations nϕ , see figure 1 a. 

In the expression of kinetic energy, the inertia of rotation of particles is taken into account. 
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The potential energy of the elastic connections of the elements m and k can be written in the form 
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where the following notations are introduced: 
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km uuu −=∆ , ( ) 2kmkm hvv ϕϕγ +−−= , 
km ϕϕϕ −=∆ . 

This form of the potential of interaction was introduced in [10] for simulation of granular media. It 

should be noted that in the micropolar theory of elasticity, the potential also includes three similar 

terms. Particular cases of the potential (2) are the potential of a beam-type joint (figure 1b) that is used 

in modeling of materials with a beam microstructure and the potential of a complex symmetrical 

( )32 cc =  connection of particles (figure 1 c), which is employed for development of continuum 

models of lattices consisting of particles of finite size [8, 9, 11]. 

On the basis of the Lagrangian, using the kinetic energy (1) and the potential of the connections 

(2), the equations of motion of a particle ( )mn,  of a unit cell are derived. Taylor series expansion up to 

the second order of the discrete equations with respect to the displacement components and rotations 

leads to continuum equations. They are analogs of the equations of the micropolar theory of elasticity. 

The derivation of continuum models from discrete models allows, in particular, establishing a relation 

between micro- and macroparameters.  

 

3. Multi-field approach in modeling of microstructured solids. Combination of approaches of 

multi-field and micropolar mechanics 

For construction of a micropolar model, in contrast to the classical theory of elasticity, the rotational 

degrees of freedom of the particles are taken into account. However, the drawback of the micropolar 

model is that it is not capable of describing rapidly changing short-wave-length deformations of the 

lattice.  

The classical micropolar model is constructed on the basis of a primitive cell (figure 1 a), using the 

minimal number of fields corresponding to the degrees of freedom of the cell. Such an approach is a 

certain hypothesis, the rejection of which leads to the multi-field theory. The construction of multi-

field models is based on the consideration of macrocells composed of several primitive cells, and, 

 

Figure 1. The Cosserat square lattice (a). The models of the two variants of connections in the 

Cosserat lattices: (b) a beam-type connection, (c) a complex connection of particles of finite size. 

 

 
 

Figure 2. Variants of macrocells for construction of two-field (a-c) and four-field (d, e) models. 
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accordingly, more fields are used to describe deformations. Such an approach provides, particularly, a 

description of short-wavelength deformations. A review of the results on the development of the 

multi-field theory of bodies with a microstructure is given in [12]. 

Using various macrocells (figures 2 a-e) the multi-field approach enables one to construct a 

hierarchy of models describing the dynamic properties of the lattice with increasing accuracy [13, 14]. 

The classical single-field micropolar model is valid for approximation of lattices for low-frequency 

long-wavelength oscillations. Multi-field models improve the single-field model for high-frequency 

short-wavelength oscillations. These models can be useful, in particular, for modeling lattices as 

directed frequency filters. The area of the Brillouin zone in which the model is improved depends on 

the choice of a macrocell. 

In [15,16], it was shown that there are systems with the long-wavelength and short-wavelength 

static boundary effects. The classical micropolar model describes long-wavelength boundary effects, 

but it is not suitable for systems with short-wavelength boundary effects, since for their description 

one function must rapidly vary, and the long-wavelength model containing only second-order 

derivatives is not applicable. Both long-wavelength and short-wavelength deformations are effectively 

described by two slowly varying functions of the two-field model. Therefore, the two-field model is 

applicable to describe the effects of both types. Consideration of such deformations can be important 

in the problems of destruction. 

 

4. Cosserat lattices with special properties 

4.1. Lattice of particles of finite size with auxetic properties  

Materials with a negative Poisson's ratio are called auxetics. The property of auxetics to expand in the 

lateral direction under uniaxial tension makes them attractive for technological applications. 

In [6], for the structural model presented in figure 3 a, discrete and micropolar models were 

developed. Further, the model of the ordinary elasticity theory is obtained by eliminating the rotational 

degree of freedom. This allows us to find the relationship between micro- and macroparameters, in 

particular, to express the Poisson’s ratio in terms of microstructural lattice parameters and to find 

parameters for which the Poisson's ratio is negative. It is shown that the negative Poisson’s ratio is 

realized only if the particle sizes are not equal to zero, i.e. the finiteness of the particle size plays an 

important role for the manifestation of the auxetic property. This result was confirmed in [11] for a 

similar lattice consisting of round particles with symmetric spring connections of three different types. 

The short-wavelength rotation fields are typical for an auxetic lattice presented in figure 3 a. They 

are realized even in the case of simple stretching. However, as mentioned above, short-wavelength 

deformations are not described by the ordinary micropolar theory. In [7], two-field and four-field 

models were developed. It is shown that multi-field models describe short-wavelength oscillations and 

static short-wavelength boundary effects in an auxetic lattice. 

 

4.2. The Cosserat lattice with a chiral microstructure 

The potential (1) corresponds to the connection of particles shown in figure 1 c, in the case when 

32 сс = . To study chiral structures, we consider the opposite case, when 32 сс ≠ . In this case, the 

interaction potential takes the form 
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where the following notations are used: 
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It can be shown that the first three terms of the potential (3) can be obtained by choosing proper 

coefficients of the potential (1). The potential (3) contains the fourth additional component, which 

enables one to take chirality into account. Accounting for this component leads to changes in the 
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equations of the micropolar theory. For a square lattice of finite size particles (figure 1 a) with 

complex asymmetric connections (figure 1 cc), they take the form 

( ) ( ) ( ) ,0,2122211 =+−−+++= yxfvvСuСuСu xxyyxxyyyxxtt ϕϕρ  

( ) ( ) ( ) ,0,2122211 =+−−+−+= yxfuuСvСvСv yyyyxxxxxyytt ϕϕρ                         (4) 

( )( ) ( ) ( ) ( ) .0,224
122222

2

33
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Here ( ) ( ) 2,, hFyxf km
xx = , ( ) ( ) 2,

, hFyxf
km

yy = , and ( ) ( ) 2,
, hFyxf

km
ϕϕ =  are the components of the 

vector of distributed forces and moments, 2hM=ρ  is the density of the medium, 2hJj =  is the 

moment of inertia of a particle per unit cell, M is the mass of the particle, J is its moment of inertia. 

For the chiral lattice with 32 сс ≠  the elasticity modulus is 012 ≠C . If 012 =C , i.e. for symmetric 

connections with 
32

сс = , equations (4) are structurally similar to the equations of the micropolar 

elasticity theory. If 012 ≠C , the equations (4) contain additional components determined by chirality. 

The chiral lattice possesses some interesting properties. For example, when a concentrated force 

acts on an ordinary lattice, the deformation field is symmetric with respect to the axis of the force 

action. In the case of a chiral medium, the axis of the force application is displaced and the 

deformation field is not symmetric with respect to this axis. The load is transmitted in the lateral 

direction from the force action axis. Moreover, the particles of the chiral lattice deviate in different 

directions, depending on the type of force acting - compressive or tensile. 
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