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Abstract. Rotary desiccant air conditioning is a thermally driven and CFCs free technology 
which mainly uses low grade heat sources, such as solar energy and waste heat. The 
dehumidifier is the critical component of the desiccant air conditioning system and its 
performance affects in a decisive manner the effectiveness, size and manufacture cost of the 
whole system. This paper presents an adequate simulation tool to predict the behaviour of 
packed bed dehumidifier of rotary wheel type under appropriate working conditions to a solar-
assisted configuration. The analysis is carried out through a one-dimensional gas-side 
resistance model of heat and mass transfer processes on air-solid desiccant interface and 
provides a large number of numerical results that can be used for design and operational 
optimization of the desiccant wheel.  

1. Space cooling – facts and trends 
In the European area, heating and cooling is the largest energy use sector, being in charge of 546 
Mtoe, half of the EU’s final energy consumption and it is forecasted to maintain its leading position 
under both business-as-usual and decarbonisation scenarios by 2030 and 2050 [1,2]. Out of the total 
amount of energy assigned to heating and cooling, 45% is used in residential sector, 37% in industry 
and 18% in services [1]. The largest share of the energy used for heating and cooling purposes comes 
from fossils fuels (about 75%), which raises concerns about environmental effects and energy supply 
security.  

Buildings account for about 40% of energy consumption and provide 36% CO2 emissions in EU 
area and similar figures have been reported globally [3]. Significant proportion of this energy (about 
85%) is used by HVAC equipment to meet thermal comfort requirements. Space heating dominates 
energy use in buildings and represents over half of total consumption. Even that space cooling 
accounts a modest share of 2% at European level, energy demand for space cooling has pursued a 
steady increase during the last decades, in both residential and services sub-sectors [4]. Studies on this 
topic show that this will increase sharply due to the growing thermal loads driven by climate change, 
new architectural trends such as increase of the ratio of transparent to opaque surface in the building 
facades but especially due to higher indoor comfort demand of the occupants sustained by higher 
income and lower prices of AC units in the emerging economies. 

By far, the large majority of the space cooling is supplied by electrically driven devices based on 
vapour compression refrigeration cycle. The fast growing demand for air conditioning is resulting in 
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higher consumption of electricity and implicitly a higher consumption of primary energy, dominated 
by fossil fuels. A rough estimate of the world electricity consumption for air conditioning is of one 
trillion kWh annually and the energy for space cooling could increase by 10 times by 2050 [5]. 

The responsibility to secure fossil resources for future generations and the necessity to reduce the 
emission of Green House Gases (GHG) are two of the greatest challenges we have to deal with this 
century. Sustained efforts are needed to reach the EU climate and energy targets for the years 2030 
and 2050 and, in this regard, a particular attention is paid to renewables energy. New technologies for 
air conditioning are investigated to overcome the environmental and economic issues and one of the 
most promising is the solar-powered cooling technology. The fact that peak cooling demand in 
summer is associated with high solar irradiance makes this concept very attractive [6]. 

Solar cooling technologies are grouped into two broad categories: solar thermal cooling (the heat 
needed for cooling process is provided by solar collectors) and solar electric cooling (that uses 
photovoltaic panels to generate electricity for vapour compression chillers) [7]. Due to higher 
efficiency and also a lower initial cost of solar thermal collectors compared to that of photovoltaic 
panels, during the last decades more interest has been paid to the solar thermal-drive cooling 
technologies, especially solar sorption (adsorption and absorption) [8]. More than 1,200 solar thermal 
cooling systems were installed worldwide by the end of 2014 and the market shares depiction looks 
like this: absorption cooling systems - 70%; solid desiccant cooling systems - 14%; adsorption cooling 
systems – 13%; liquid solar desiccant cooling systems - 2 % and others – 1% [2, 9]. Even if the overall 
number of the systems installed up to now indicates that solar cooling is still a niche product, its 
market potential is huge. The International Energy Agency (IEA) estimates that by 2050, 17% of the 
total global demand for cooling shall be covered by solar cooling, which means 1,5 EJ per year [10]. 

In this context, the present paper provides an approachable and accurate method to analyze solar 
desiccant cooling systems, with a focus on the major component, the dehumidifier of rotary wheel 
type. A detailed mathematical model of heat and mass transfer processes manifesting at the moist air-
solid desiccant interface has been developed. The main goal was to predict the desiccant wheel 
behaviour under different working conditions in terms of its performance and effectiveness. 

2. Principle of desiccant evaporative cooling 
Desiccant cooling systems are open cycle systems that use water as refrigerant and a hygroscopic 
material (desiccant) as sorbent. The cooling effect is produced through a combination of air 
dehumidification and adiabatic cooling that is why these systems are generally known as desiccant 
evaporative cooling (DEC) systems [11]. Both parameters, air temperature and air humidity, can be 
adjusted to the indoor comfort requirements and the necessary fresh air is also supplied at the same 
time. For continuous operation of the system, heat provided by solar collectors or other energy source 
is used for desiccant regeneration. 

The interest from the researchers and manufacturers for DEC technologies is justified by the 
advantages they offer [11-13]: low driving temperatures, in range 60°C - 90°C, which make them 
suitable for low grade heat supply, like solar or waste heat sources; high COP values, especially for 
liquid-based technologies; environmental friendly refrigerant (water); working without noise and 
vibrations; low operating cost; inexpensive desiccant materials; relatively short payback period. 

Different desiccant materials are used, in either liquid or solid phases, de most commonly being 
silica gel, calcium chloride, lithium bromide, lithium chloride, activated carbon and zeolites [14]. The 
desiccant units currently used are based on five configurations: liquid spray towers, solid packed 
tower, rotating horizontal bed, multiple vertical bed and rotating desiccant wheel [15]. 

Most of the DEC systems available on the market use solid desiccant materials, especially for large 
scale installation (centralised operation coupled with air handling unit) and the most commonly used 
configurations include a rotary desiccant wheel.  

The operating principle of a solid desiccant evaporative cooling system is depicted in figure 1 
[7,12,16]. The dehumidifier of rotary wheel type is divided in two sections with air streams in counter-
flow arrangement. 
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Figure 1.  Basic configuration of the Desiccant and Evaporative Cooling (DEC) System 
AF – Air fan; HC – Heating coil; EC – Evaporative cooler; DW – Desiccant wheel; HRW – Heat 

recovery wheel. 
 
In the supply air section, the solid desiccant partially adsorbs the moisture of the outdoor air. The 

released adsorption heat and the hot desiccant particles coming from the regeneration side increase the 
temperature of the air. Therefore, the air exits the process section of the rotary wheel hot and dry. 
Passing through the heat recovery wheel, a part of the added adsorption heat is rejected on the 
regeneration section where the desiccant material is reactivated. The evaporative cooling process 
reduces substantially the air temperature, while the humidity achieves the proper level for comfort 
requirements. On the regeneration section, the return air extracted from the building is successively 
cooled using evaporative cooling device and pre-heated by the heat recovery wheel. Finally, the solar 
collector provides the heat needed to regenerate the desiccant material in order to obtain a continuous 
operation. Heating coil (that is used only in the heating season) and backup heater are two other 
components that contribute to the extending of the operating range of desiccant system. 

Rotary desiccant wheel is the key element of the desiccant cooling system which has a significant 
potential for improving the open-cycle performance and reducing the size and operating costs of the 
whole system [6,17]. Comprehensive studies related on the desiccant wheel for air conditioning 
applications have been carried out and the topic is still in the attention of the researchers around the 
world. These studies are focused mainly on two critical aspects: the development of new, advanced 
desiccant materials and the optimization of system configurations suitable for low grade heat sources, 
including solar energy [18]. The objectives pursued are the increase of competitiveness compared to 
the conventional cooling systems and the expansion of the current niche market. 

3. Mathematical model for rotary desiccant dehumidifier 
Mathematical modelling and numerical simulation are widely used for detailed analysis and 
investigation related to desiccant wheel design and operation. The advantages are obvious: it takes less 
time and needs lower funds than experimental methods for predicting the behaviour and the 
performance of a desiccant wheel; it can produce a large number of results, so it is very convenient to 
perform parametric study and optimization analysis; it can reveal some aspects in research areas that 
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are inaccessible to experimental approach (e.g. inside the desiccant particle) [17]. Consequently, 
plenty of mathematical models have been constructed based on the combined heat and mass transfer 
processes occurring within the desiccant wheel. The models can be divided in two main categories: 
gas-side resistance (GSR) models and gas and solid-side resistance (GSSR) models.  In the GSR 
models, heat and mass transfer within desiccant particles is neglected, therefore “no intra-particle mass 
and temperature gradients” hypothesis is assume. In this case, convection is the dominant mode of 
heat and mass transfer from the air stream to the desiccant surface. GSSR models consider heat and 
mass transfer in both solid and air sides, and can well explain the actual transfer processes occurring in 
the desiccant particles, such as heat conduction and mass diffusion. A number of physical mechanisms 
are involved: surface reaction coupled with the adsorption process; inter-particle channel diffusion and 
adsorption within the layer; micro-pore and micro-pore diffusion and adsorption within solid phase 
[19]. The complexity and the precision of the governing equations is thus greatly increased.  
 Different configurations for desiccant dehumidifier have been modelled including solid packed 
bed, with axial and radial air flow, rotating horizontal bed, multiple vertical bed, rotating honeycomb 
or fluidized bed [20]. Many research studies were focused on heat and mass transfer processes in 
packed bed adsorber which is one of the most used models for dehumidification and cooling purposes. 
Several packing and desiccant solutions were developed and silica gel was among the most common 
materials due to their high affinity for water vapour. To improve the desiccant bed performance, some 
composite mixture formulas were proposed. So, Majumdar et al. [19] used in their study a mixture of 
silica gel particles and inert particles with different compositions and thermo-physical properties and 
Rady et al. [21] included in desiccant layer macro-encapsulated phase change materials to decrease the 
effect of heat of adsorption on the adsorption capability. A new composite desiccant was developed by 
Aristov et al. [22] by impregnating silica gel with calcium chloride in order to enhance drying 
capacity. Starting from the observation that the silica gel particle does not fully participate in 
adsorption process, Ramzy et al. [23] propose a composite formula obtained by coating an inert 
particle with a layer of silica gel. 
 To reduce the disadvantage of non-homogeneous operation of the vertical packed bed, Awad et al. 
[20] proposed a new bed configuration:  hollow cylindrical dehumidifier with radial air flow. 
 Even if a large amount of works have been conducted on modelling and analysing solid packed bed 
adsorbers, further efforts are still needed. The study whose results are presented in this paper follows 
the same research direction. The overall goal of this study is to develop a theoretical model to analyze 
the heat and mass transfer processes in packed bed adsorber of rotary wheel type for air conditioning 
purposes. The model is a GSR ones and is intended to be a useful tool to assess the effect of design 
parameters and operating conditions on the performance of the dehumidifier. 

3.1. Model assumptions
The mathematical model of heat and mass transfer processes manifesting within the packed bed 
absorber of rotary wheel type is based on the following assumptions: the rotary bed is adiabatic, that is 
why the effects of the heat transfer at the sides of the bed are neglected; heat transfer within the rotary 
bed takes place only through convection mode; conduction and radiation are neglected; temperature 
and humidity/water content gradients on radial direction are neglected; one adsorption component is 
only considered (water vapor); heat and mass transfer resistance is concentrated in the external film of 
the desiccant pellets that means no temperature and water content gradients exist within the pellets; air 
flows in axial direction; because of the relative small dimensions of the pellets (3 mm diameter) and 
the continuity of the interstitial spaces among the pellets, the changes of flow direction are neglected. 

3.2. Governing equations 
The equations of the mathematical model result from applying the mass and energy balances for both 
solid desiccant and moist air, to a fixed control volume in cylindrical coordinates (figure 2). The 
control volumes placed in different positions within the desiccant wheel form a two dimensional 
network of steady-state heat and mass exchangers within which there is a cross flow of humid air and 
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solid desiccant. Adsorption/desorption processes are followed in step-by-step procedure by successive 
movement of the control volume along axial direction (z) and angular/circumferential direction (�). 

 

 

Figure 2. Control volume of the desiccant wheel. 
  

Using the above mentioned assumptions, the four balance equations are as follows: 
 - gas phase energy balance 
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 - gas phase moisture balance 
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� �y v *

s

K AW
Y Y

�

�� � �
� 	 (4)

 The nomenclature used in governing equations is presented below: Tg, Ts - gas and solid desiccant 
temperature [K]; Y - humidity ratio [kg/kg]; Y* - humidity ratio in equilibrium with desiccant [kg/kg]; 
W-water content of solid desiccant [kg/kg]; hc -gas-side convective heat transfer coefficient [W/m2K]; 
Ky - gas-side mass transfer coefficient [kg/m2s]; cpa, cps, cpv, cw – specific heat of dry air, solid 
desiccant, water vapor and water [J/kg K]; �g – gas (air) density (kg/m3), �l -  bulk density of packed 
bed [kg/m3];  �s – density of desiccant particle [kg/m3]; Av - transfer area per unit volume [m2/m3]; Fs - 
ratio of free flow area to cross section area of rotary dehumidifier; hlg - latent heat of vaporization 
[J/kg]; qB - formation enthalpy [J/kg]; ug - axial air velocity [m/s]; � - angular velocity [rad/s]. 

3.3. Auxiliary relations 
Heat and mass transfer coefficients for the gas side were calculated using Gnielinski’s relations [24] 
based on the local conditions/parameters. 
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where Nu, Re and Pr are Nusselt, Reynolds and Prandtl numbers, dp is diameter of the desiccant 
particle [m], kg is air thermal conductivity [W/m2K];  
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where Sh and Sc are Sherwood and Schmidt numbers, D12 is mass diffusivity of water vapor in the air 
[m2/s]. 
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 The thermo-physical properties of air and solid desiccant (specific heat, viscosity, thermal 
conductivity) included in governing equations were calculated in terms of local temperature and 
humidity/water content. The axial air velocity depends on the local temperature and pressure and it’s 
calculated in the hypothesis of a constant mass flow rate. 
 Pressure drop through the bed was calculated with well-known Ergun equation: 
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where dz is the thickness of each control volume [m], �g is dynamic viscosity of air [N·s/m2] and � is 
the bed porosity. 
 Overall pressure drop can be calculated by summing up the pressure drops of all control volumes in 
axial direction. 
 The equilibrium relative humidity on the surface of silica gel particle is given by the following 
formula [24]: 
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 � 	 . (13)

The relationship between the humidity ratio and the relative humidity is described as: 
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where p is air pressure and pvs  is saturation pressure of water vapour, 

� �20 896 5204 0093vs sp exp . . / T� 	  [mbar] . (15)

The differential adsorption heat released in the sorption process is computed using the following 
algorithm: 

� � � �0 273 P
ad lg B ; lg lg w pv g Bq h q h h c c T ; q M

�� 
 � 	 	 	 �  , (16)

where �P is Polanyi potential [kJ/kmol] for couple silica gel-water [25], qB is formation enthalpy 
and M is molecular weight of adsorbed molecules. 
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3.4.  Boundary conditions 
The mathematical model consists of governing equations (1), (2), (3), (4) and equilibrium equation 
(13) and there are four unknown variables: Tg, Ts, Y and W. This model has been solved numerically 
using finite difference scheme and the following boundary conditions were considered: 

- for process air, � �0 ads,� �! � � � � �0 00 0g gT , T and Y , Y� �� � ; 

- for regeneration air, � �ads , 2� � "! � � � � �0 00 0g g ,reg ,regT , T and Y , Y� �� � ; 

- for desiccant, at inlet on the adsorption stage (first rotation), � �0z ,L! � � �s s0T z,0 T� and 

� � 0W z,0 W� . 
Temperature and water content of silica gel on the inlet of the regeneration sector were provided 

from the last computational step of the previous adsorption stage. 

4. Results and discussion 
The governing equations for the proposed gas-side resistance model are solved using forward scheme 
finite difference method with prescribed boundary conditions as given by the previous equations. A 
grid size of 0.1 mm in axial direction and 0.05 degrees in circumferential direction is used to ensure 
numerical stability and accuracy. 
 The input data that are used for the simulation are listed in table 1. 
 

Table 1. Operational and design conditions. 

Y0 Inlet humidity ratio of supply air [g/kg] 14 
Tg0 Inlet temperature of supply air [°C] 30 
Y0,reg Inlet humidity ratio of regeneration air [g/kg] 12 
Tg0,reg Inlet temperature of supply air [°C] 80 
Ts0 Inlet temperature of solid desiccant [°C] 70 
W0 Inlet water content of solid desiccant [g/kg] 40 
dp Desiccant particle diameter [mm] 3 
cps Isobaric specific heat capacity of solid desiccant [J/kgK] 921 
ug0 Inlet velocity of supply/regeneration air [m/s] 0.9 
� Rotational speed [rph] 5 
R Bed/Desiccant wheel radius [mm] 100 
L Bed/Desiccant wheel thickness [mm] 50 
�ads Supply air sector [degrees] 240 

 
The output of the theoretical model is, mainly, the desiccant parameters (water content and 

temperature) and the air conditions (humidity ratio and temperature). Using these properties, the 
performance of the desiccant wheel can be evaluated and an up-close look into the mass and transfer 
processes can be conducted. 

Figure 3 and figure 4 depict the air temperature and humidity ratio profiles along the desiccant bed 
for different positions on the process and regeneration sectors. There is a certain instability that 
manifests itself when passing from one sector to another. Thus, the evolution in the process sector 
begins with a brief desorption (figure 3b) which takes place along the whole thickness of the desiccant 
bed. The phenomenon is determined by the relative high temperatures within the layer (figure 3a). As 
the angular position in the adsorption sector changes, the drying ability of the desiccant material is 
regained in the profoundness of the bed. 
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(a)                                                                      (b) 
Figure 3. Air temperature and humidity ratio profiles – adsorption/process stage. 

 

 
(a)                                                                       (b) 

Figure 4. Air temperature and humidity ratio profiles – desorption/regeneration stage. 
 

The initial reversed process (of adsorption type) is also revealed in the regeneration sector, but it is 
restricted only to the first 10 mm in thickness, in airflow direction (figure 4 b). The dynamics of the 
transfer processes depends on the axial position within the rotary bed and the angular/circumferential 
position on the regeneration sector. Locations where desiccant material is already regenerated 
(temperature and humidity ratio of the regeneration air are constant) are displayed in figures 4a si 4b.  

Figures 5a and 5b show the water content and temperature profiles obtained for the counter flow 
desiccant wheel at different positions within the rotary bed/layer. 

High-intensity heat transfer prior to the dehumidifier entry into the operating regime (adsorption or 
desorption) as well as inactivity ranges of the desiccant material due to reaching the equilibrium 
humidity at the gas-solid interface are clearly highlighted in these diagrams. As previously mentioned, 
the dynamics of the transfer processes depends on the axial position, z. 

The numerical results obtained for rotary layer can be translated for the similar fixed layer using 
the following correlation: � = �·	, where 	 is time passed from the beginning of the 
adsorption/desorption operations. 
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(a)                                                               (b) 
Figure 5. Solid temperature and water content profiles. 

5. Conclusions 
In the present paper a new one-dimensional mathematical model that describes the combined heat and 
mass transfer processes within the packed bed dehumidifier is proposed. The model is of gas side 
resistance type and provides an effective tool for analysing the performance of rotary or fixed 
dehumidifier.  
 To improve the accuracy of the numerical results, the thermo-physical properties of air and solid 
desiccant (specific heat, viscosity, thermal conductivity) were evaluated in terms of local temperature 
and humidity/water content. Also, the local axial air velocity and the pressure drop across the layer 
were considered.  

The present study focuses on the evolutions of the air and solid desiccant parameters (temperature 
and humidity ratio/water content) in axial direction, at different angular positions in both process and 
regeneration sectors and in circumferential direction, at different profoundness within the rotary layer. 

The mathematical model can generate a large number of numerical results that can be used to 
analyze the impact of design and operating conditions on the desiccant wheel performance. Air 
streams temperature, humidity and velocity, type of desiccant material (in homogeneous and combined 
bed), desiccant wheel thickness and radius, rotational speed, angular size of process and regeneration 
sectors are the most important analysis criteria. Finally, an optimized desiccant wheel in terms of 
moisture removal capacity, heat supplied for the regeneration stage and pressure drop across the rotary 
layer can be obtained. 
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