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Abstract. The paper presents an approach containing a package of several integrated 
programs, each of them being devoted to one of the principal problems regarding 3RRR planar 
parallel mechanisms: workspace, forward and direct kinematics and singularities problem. In 
order to perform workspaces coordinates and forward kinematics was used classical 
procedures, widespread and known in technical literature. For direct kinematics and 
singularities study, we used classical procedures also, but applied in a particular ways, related 
to each of them. Thereby, the proposed programs package represents a useful instrument in 
practical goals, one of them being didactical process of students’ instruction in engineering, but 
also for research and design purposes. The paper is a refined and a extended research of an 
older one [24].  

1. Introduction 
Together with extensive research of parallel mechanisms, it became clear that they present a series of 
incontestable advantages, as: higher structure stiffness, higher movements precision, fast response, 
increasing speeds, increasing working loads, and decreasing links mass. However they have a very 
important disadvantage, the presence of singularity points inside its workspace. This merely 
disadvantage drastically limits its applications [1-24]. 
 Because the planar 3-RRR parallel mechanism determined a great interest in latest scientific 
literature, in this paper we do not insist about the exhaustively treated theoretically aspects, they will 
be pointed out only. Thus, workspace determining and forward kinematics was done using classical 
methods and mathematical apparatus from literature. In order to perform direct kinematics and 
singularities study we solved these fundamental and classically expressed problems, using certain, and 
special procedures with original character. 
  For each enumerated problem (workspace, forward and direct kinematics and singularities), a set 
of correlated computing programs was drew up, that allows to obtain numerical results [1-24].    

2. Theoretical considerations 
Let consider a planar mechanism shown in figure 1, consisting of two platforms: mobile 1 2 3B B B  
platform and fixed one 1 2 3O O O . Without loosing of generality, it was supposed both platforms as 
equilateral triangles, 1 2 2 3 1 3B B B B B B b� � � and 1 2 2 3 1 3O O O O O O L� � � , proximal links i iO A are 
equal ( 1i iO A l� , 1,3i � ) and also equal are distal links i iA B ( 2i iA B l� , 1,3i � ). The end-effector is 
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located in point M – the centre of equilateral triangle 1 2 3B B B . This point is determined by lengths is , 

i is B M� ,  1,3i � .   

 
 

Figure 1. The 3RRR mechanism [4]. 
 
In order to solve the above mentioned problems regarding this mechanism, certain notations related to 
figure 1 were introduced: Oxy  - a fixed referential system tied of fixed 1 2 3O O O platform; M MMx y - a 
mobile system belonging to mobile 1 2 3B B B platform;  [ , , ]q x y� � - the input parameters, representing 
rectangular coordinates ,x y  of the end-effector in fixed referential system and � - orientation of 
mobile platform, measured between Ox and MMx axes; 1 2 3[ , , ]� � � � �  - angular positions of proximal 
(actuated) links; i io OO� - the position vectors of fixed actuated joints iO ; i i ir O B� , iv OM� , 

iis MB� . 
 For the studied mechanism, can be written following relation, based on figure 1, 

i iir v R s o� � � � ,                                                                     (1) 

where 
cos sin
sin cos

R
�	 


� � �

 �

� �
� �

 is the revolute matrix of centre M and radius si.  

2.1. Workspace and IKP 
Because these two problems were wide treated in literature, in this paper they are shortly presented. 
Thus, after squaring relation (1), the position vector of any workspace point can be expressed as: 
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,      (2) 

where M
Bix , M

Biy  are the vertexes iB  coordinates in mobile system and Oix , Oiy - the fixed points 
coordinates reported to fixed system. 
 Writing relation (2) for situation when distal and proximal links overlaps or are in extension, i.e. 

1 2ir l l� �  and after some calculations, it obtains the equations limiting mechanism workspace, as a   

mathematical gather of six circles with variable centres, concentric two by two: 
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� � � � � �2 2 2
1 2cos sin sin cosM M M M

Bi Bi Oi Bi Bi Oix x y x y y x y l l� � � � � � � �� � � � � .           (3)  

 Centres coordinates are:  
cos sinM M

i Bi Bi Oia x y x� � � �� �  , sin cos .M M
i Bi Bi Oib x y x� � � �� �                         (4) 

 
 In order to solve the forward kinematic problem it writes an equation, according to figure 1: 

i ii ii iA B OM R s O A OO� � � � � .                                                      (5) 

Applying law of cosines in i i iO A B  triangles, squaring equation (5), after accomplishing calculations, it 
can write the input rotation angles 1 2 3[ , , ]� � � � � : 

12 tan i i i
i

i i

y b d
x K a

�
	 
� � �

� � � �� �� �
 �
� ,                                                          (6) 

where, 1id � �  is an coefficient depending on the mechanism assembling mode (of eight possible), 

� � � �2 2 2 2
1 2

1

1
2i i iK x a y b l l
l
� �� � � � � �� �  and � � � �2 2

i i i ix a y b K� � � � � � . 

2.2. DKP and singularities 
As was mentioned above, for these two important problems were used knowledge wide developed in 
technical literature, but applied in a particular ways. Just this particularity contributes to versatile 
character of the proposed approach. So, to solve DKP, it supposes angular positions of proximal 
(actuated) links 1 2 3[ , , ]� � � � �  as input data, it find to determine as output parameters [ , , ]q x y� �  - 
the end-effector coordinates and the mobile platform orientation.  
 This problem can be approached two ways: firstly, knowing instantaneous positions of the 
proximal links, three ends Aix , Aiy , can be written six equations, expressing the length 1l  of proximal 
links and the side b  of mobile platform: 

� � � �2 2 2
1 1 1 1 2B A B Ax x y y l� � � �    

� � � �2 2 2
2 2 2 2 2B A B Ax x y y l� � � �  

� � � �2 2 2
3 3 3 3 2B A B Ax x y y l� � � �                                                      (7) 

� � � �2 2 2
2 1 2 1B B B Bx x y y b� � � �  

� � � �2 2 2
3 2 3 2B B B Bx x y y b� � � �  

� � � �2 2 2
3 1 3 1 .B B B Bx x y y b� � � �  

This system with unknowns Bix , Biy , 1,2,3i � can be solved by numerical methods, taking into 
account appropriate initial conditions. For first iteration may be considered values obtained 
graphically e.g.,  and for the others ones can be considered as initial conditions, the output values from 
the previous step. 
 Other method to solve this problem (used in our research), takes into account the four bar linkage 
with variable basis 2 2 3 3A B B A  (figure 1, figure 2). This linkage is supposed to have variable basis 
(length 2 3A A ) and actuated joint 2A , the independent (input) parameter is angle 2�  and output 
parameters – angles b� , 3� , � . 
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Figure 2. The 2 2 3 3A B B A� � �  kinematic chain, [24]. 
 
Let consider the vector contour 2 2 3 3A B B A  (figure 2), and aided it, following vector equation can be 
written: 

2 2 3 32 3 3 2 0A B B B B A A A� � � � .                                                          (8) 

Projecting this equation on 2 2 2A x y system, with origin in 2A and axes being parallel to general fixed 
system Oxy , it obtains: 

2 2 2 3 3 2cos cos cosb A Al b l x x� � � �� � � ,  2 2 2 3 3 2sin sin sin ,b A Al b l y y� � � �� � �        (9) 

with imposed 2�  and unknowns ,b�  3 ,�  1,Bx  1Bx . 
Introducing in 3 2 2 2cosA Aa x x l� � � �  and 3 2 2 2sinA Ac y y l� � � � , in (9), this becomes:  

2 3

2 3

cos cos
sin sin

b

b

l b a
l b c

� ��
� � ��

� �
� �

  or  2 3

2 3

cos cos
sin sin .

b

b

l a b
l c b

� ��
� � ��

� �
� �

                                  (10) 

Squaring both sides of equation (10) and suitable arranging its terms, we have: 

 
2 2 2 2

2cos sin 0
2b b

a b c la c
b

� � �
� � �� � .                                               (11) 

Writing down 
2 2 2 2

2

2
a b c l d

b
� � �

� , 2tan
2

t�� , 2

2sin
1b

t
t

� �
�

, 
2

2

1cos
1b

t
t

� �
�

�
,  equation (11) takes 

following form: 

� � 2 2 ( ) 0a d t c t a d� � � � � � � .                                                        (12) 

If 2 2 2 0c a d � � � ! , then equation (12) has two real solutions: 

             1,2
ct
a d
�  

�
�

 and � �12 tanb t� �� .                                                     (13) 

Then, 
� �
� �

1 2 2

1 2 2

cos cos 60

sin sin 60
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B b

x l b

y l b

� �

� �

� � � � � ��
�

� � � � ���

�

�
, 2

3b
"� �� �  with respect the condition 1 1 2A B l#  and  

2 2 2cos cos ,
6M A bx x l s 	 
� � � � �� �


 �

"� �       2 2 2sin sin
6M A by y l s 	 
� � � � �� �


 �

"� � .                (14) 
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2.3. Singularities problem 
Considering function, 

� � � � � �2 2 2
1 1 2, cos sin cos sin cos sinM M M M

i Bi Bi Oi i Bi Bi Oi iF x y x x y x l y x y y l l� � � � � �� � � � � � � � � � � ,  

as an implicit three dimensional function of a three dimensional variable [ , , ]q x y �� , so that 
F(�,q) = 0 . After differentiating this relation with respect to time it obtains an expression between 
input and output velocities � �q �J q + J � = 0�� . From this matrix equation it can write the q�J  jakobian 
determinant of qJ matrix. Putting q�J = 0 , singularities of 2nd type can be studied [1-5]. 

 The problem shortly presented, (workspace, forward and direct kinematics, singularities) can be 
studied using the proposed programs package, having the following structure (figure 3): 

 
 

Figure 3. Programs package general structure. 
 

Figure 4 indicates also the order which must respect in solving these problems, taking into account 
that output data from a problem ought to be input data for other.  

3. Numerical exemplifying 
In this section, some numerical results after running proposed programs will be presented. In each case 
were indicated dimensional parameters of mechanism and diagrams significances.  
 

 
 

a)                                          b) 
Figure 4. a) Workspace and end effector trajectory; b) Driving links angles as result of IKP; L=2.3; 

l1=1.1; l2=1.2; b=0.5; / 4�� " ; linear trajectory. 
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                            a)                                                                       b) 
 

Figure 5. a) DKP result, red – obtained and black – etalon trajectories; b) Mobile platform angle error; 
L=2.3; l1=1.1; l2=1.2; b=0.5; / 4�� " ; linear trajectory. 

 

 

a)                                          b) 
 

Figure 6. a) Workspace and end effector trajectory; b) Driving links angles as result of IKP; L=2.3; 
l1=1.1; l2=1.2; b=0.5; / 4�� " ; triangular trajectory. 
 

 

                            a)                                                                       b) 
 

Figure 7. a) DKP result, red – obtained and black – etalon trajectories; b) Mobile platform angle error; 
L=2.3; l1=1.1; l2=1.2; b=0.5; / 4�� " ; triangular trajectory. 
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                            a)                                                                       b) 
 

Figure 8. a) Workspace and end effector trajectory; b) Driving links angles as result of IKP; L=2.3; 
l1=1.1; l2=1.2; b=0.5; / 4�� " ; quadrilateral trajectory. 

 

    

a)                                                   b) 
 

Figure 9. a) DKP result, red – obtained and black – etalon trajectories; b) Mobile platform angle error; 
L=2.3; l1=1.1; l2=1.2; b=0.5; / 4�� " ; quadrilateral trajectory. 

 

 
         a)                                                   b) 

Figure 10. a) Workspace and end effector trajectory; b) Driving links angles as result of IKP; L=2.4; 
l1=1; l2=1.1; b=0.5; / 6�� " ; complex (‘butterfly’ curve) trajectory. 
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a)                                                   b) 

 

Figure 11. a) DKP result, red – obtained and black – etalon trajectories; b) Mobile platform angle 
error; L=2.4; l1=1; l2=1.1; b=0.5; / 6�� " ; complex (‘butterfly’ curve) trajectory. 

        

 
 

Figure 12. a) Workspace and end effector trajectory; b) Driving links angles as result of IKP; L=2.5; 
l1=1.1; l2=1.2; b=0.5; / 4�� " ; circular trajectory. 
 

    

a)                                           b) 
 

Figure 13. a) DKP result, red – obtained and black – etalon trajectories; b) Mobile platform angle 
error; L=2.5; l1=1; l2=1.2; b=0.5; / 4� "� ; circular trajectory. 
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a)                                           b) 

 

Figure 14. a) Workspace and end effector trajectory; b) Driving links angles as result of IKP; L=2.3; 
l1=1.1; l2=1.2; b=0.5; / 4�� " ; elliptic trajectory. 

 

      
a)                                           b) 

 

Figure 15. a) DKP result, red – obtained and black – etalon trajectories; b) Mobile platform angle 
error; L=2.3; l1=1; l2=1.2; b=0.5; / 4� "� ; circular trajectory. 

 
 

Figure 16. Jq determinant, emphasizing singularities zones; L=2.4; l1=1; l2=1.1; b=0.5; / 6� "� . 
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                                   a)                                                            b) 
 

Figure 17. Workspaces contour with emphasized singularities of both types 1st and 2nd, a) using level 
curves and b) using color map; L=2.4; l1=1; l2=1.1; b=0.5 / 6� "� . 

 

 
Figure 18. Jq determinant, emphasizing singularities zones; L=2.4; l1=1; l2=1.1; b=0.5; / 2� "� . 

 

   
a)                                                  b) 

Figure 19. Workspaces contour with emphasized singularities of both types 1st and 2nd, a) using level 
curves and b) using color map; L=2.4; l1=1; l2=1.1; b=0.5 / 2� "� . 
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Figure 20. Jq determinant, emphasizing singularities zones; L=2; l1=1; l2=1.1; b=1.5; / 3� "� . 
 

 
a)                                                  b) 

 

Figure 21. Workspaces contour with emphasized singularities of both types 1st and 2nd, a) using level 
curves and b) using color map; L=2; l1=1; l2=1.1; b=1.5 / 3� "� . 

 
 

Figure 22. Jq determinant, emphasizing singularities zones; L=2.5; l1=1; l2=1.5; b=1; / 3� "� . 
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a)                                                  b) 

 

Figure 23. Workspaces contour with emphasized singularities of both types 1st and 2nd, a) using level 
curves and b) using color map; L=2.5; l1=1; l2=1.5; b=1 / 3� "� , 1 2 31, 1, 1d d d� � � � . 
 
In this section were presented numerical results after running above mentioned programs. Were taken 
into consideration some simple end effector trajectories (line, triangle, quadrilateral, circle, ellipse and 
a more complex one – ‘butterfly curve’). For each of them were drawn workspace contour as 
intersection of three annular zones. Inside workspace was shown end effector trajectory located in the 
center of mobile platform. Then, after IKP running were obtained and drawn, proximal (actuated) 
links positions 1 2 3[ , , ]� � � � �  as function of time or of the incremental angular parameter used to 

define trajectory. Here, because of using arctangent function which is defined on interval ,
2 2
" "	 
�� �


 �
 

only, some mathematical transformations needed. The problem consists in fact that discontinuities in 
1 2 3[ , , ]� � � � �  diagrams comes from arctangent using but also from mechanism kinematics. As result 

of DKP program running, angular parameters of actuated links were verified. Using fine divisions of 
the independent parameters, a good correspondence were obtained between prescribed and real 
trajectories, excepting cases where trajectory intersects singularity zones of both types 1st and 2nd. This 
fact can be noticed in some diagrams.  
 All considered figures were obtained for one only assembling mode of actuated (proximal) links 
(still seven cases from the all eight may be taken into consideration).    

4. Conclusions 
This paper represents an extended, refined and a thoroughgoing study, starting from an elder one [24]. 
Following this research, an interdependent programs package was approached, in order to depict 
kinematics of the 3RRR planar mechanisms. Thus, mechanism workspace, forward and direct 
kinematics and singularities problem can be performed using this package as an specialized 
instrument. 
This instrument can be used by engineer students in learning process and also by designer engineers in 
their applications, without a very specialization in the field. 
This research need still more refinement, in each it compartments as in assembly regarded and taking 
into account complex relationship between it parts. Especially, it will pay attention about direct 
kinematics and singularities. 
The proposed software package has a versatile character, allowing to study and verify a large number 
of mechanisms from treated category.  
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