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Abstract. The paper presents a general grapho-analytical methodology for kinematical 
analysis of whichever plane cam mechanism. The main constructive solutions of plane cam 
mechanisms are reviewed and the solutions of kinematical analysis are briefly presented. The 
most important difficulty in cam mechanisms analysis is the fact that when the follower has a 
curved face with random shape, the contact point between the cam and the follower has 
unknown trajectory. At the same time, the contact point moves both on the cam and on the 
follower contour, respectively. These displacements are required in the study of accelerations. 
The paper presents a method of analysis directly applicable for actual mechanism which allows 
finding all kinematical parameters of the mechanism. For structural reasons, there are 
separately approached the curved-face follower and the flat-face follower cases.  

1. Introduction 
The cam mechanisms are mechanisms characterized by the fact that the motion is transmitted by 
means of a higher pair from a driving element, the cam, to a driven element, the follower, [1-2]. 
According to this definition, it is obvious that the gear mechanisms are a special class of cam 
mechanisms. The presence of higher pair makes more complex the kinematical study of such a 
mechanism. To sustain this affirmation, the comparison between relative motions in lower pair and 
higher pair is presented. In the case of lower pair, revolute or prismatic, by fixing one of the elements 
any of the points from the mobile element will describe the same type of curve, circle and straight line 
respectively, regardless of which of the elements of the pair is fastened. Considering the pure rolling 
contact between a circle and a straight line, the contact point will describe different trajectories 
depending on which of the pair's elements is considered fixed. Thus, when the circle is fastened, a 
point attached to the straight line will describe an evolvent curve while when the straight line is fixed, 
the points attached to the mobile circle will trace a family of cycloid. From the above considerations, it 
is expected that the kinematical study of a mechanism with higher pairs should be more intricate than 
the one regarding the lower pair mechanism [3]. To this end, if for the mechanisms with lower pairs of 
cylindrical pair type, Hartenberg and Denavit [4] set the fundamentals of a general method for the 
kinematical analysis based on matrix calculus, for higher pairs mechanisms a general method for 
kinematical approach was not elaborated and therefore in the monographs of mechanisms theory there 
are specific chapters concerning the cam mechanisms and gear mechanisms, respectively, even if as 
principle, the two types of mechanisms belong to the class of higher pair mechanisms. For the case of 
plane mechanisms, an acknowledged kinematical analysis method for mechanisms with higher pairs 
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consists in substituting these with replacing mechanisms that have in structure only lower pairs. Based 
on structural-kinematical considerations the replacement of the higher pair can be made. In principle, a 
higher pair is replaced by a kinematical element and two lower pairs.  

2. Theoretical considerations 
The usual plane mechanisms with rotating cam are presented in figure 1. Depending on the follower's 
motion and construction, they can be categorized as knife edge follower (as in figure 1a and figure1c, 
[5]) or flat face follower (figure 1b and figure 1d, [5]), case with the particular form of rectilinear 
follower which is widespread in engineering. 

 
a) b) c) d) 

Figure 1. Usual types of plane cam mechanisms [5] 

 The mechanisms from figure 1 have as common characteristic the point contact between the cam 
and the follower. The contact point moves on the contour of the cam and it can be immobile on the 
follower for the knife edge follower or mobile, for the flat face follower. Thus, relations describing the 
variation of velocity and acceleration of a point moving on a mobile curve are required.  
 A mobile frame 'y'x'O  with respect to a fixed plane Oxy  is considered as shown in figure 2.  

 
Figure 2. Motion of a point on a mobile curve  
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 In the mobile plane a curve attached to the fix plane is considered. A point M  moves on the curve 
and its position is set by the intrinsic coordinate s . Denoting by r  the position vector of the point with 
respect to origin O , by 'r  the position vector with respect to origin of the mobile plane and by 'Or  the 
position vector of the mobile origin with respect to the fixed origin, the basic relation exists:  

'rrr 'O   (1) 

As in [6], by differentiating the relation (1) with respect to time once and twice respectively and 
conveniently arranging the terms, the absolute velocity and acceleration of point M  are obtained, 
respectively: 
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(3) 

 In relation (3), c
'MMa  is the complementary Coriolis acceleration, t

'MMa is the normal component of 
relative acceleration and 

'MMa  is the tangential component of relative acceleration; the velocity and 
acceleration of mobile origin are 'Ov and 'Oa respectively. Considering consts   in relations 3, the 
relationship between velocities and accelerations of two points from a rigid are found which are useful 
in characterising the motion of the tip of oscillating follower. In order to obtain the relations 
characteristic to the flat edge follower it is sufficient to consider   .   

3. Illustration of method. Kinematics analysis for cam mechanisms with curved face follower  
To illustrate the method, the case of mechanism with oscillating curved face follower is considered. 
This mechanism was chosen because in the vector equations of velocity and acceleration all terms 
occur.  

 
 

Figure 3. Mechanism with oscillating follower with curved face 
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 The kinematics analysis of the mechanisms presented in figure 3 assumes that for given position 
and stipulated motion of the cam, the motion of the follower and the motion from higher pair B  must 
be found. In figure 3, the curvature centers of the cam and follower in the contact points are 1C  and 

2C  respectively. The replacing mechanisms is DCAC 21 , the substituting element being the rod 
connecting the centers of curvature having at the ends revolute pairs. In the higher pair the contact 
point B  and the points 1B  and 2B  from the cam and follower, respectively, overlie. Supposing known 
position of the mechanism, [7] the relation between he velocities of the points B and 1B  on one side, 
and B and 2B  on the other side, according to relation (2) are written:  
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(4) 

 As it can be noticed, the system (4) is undetermined since by equaling the right members of the 
equations a plane scalar equation is obtained, with two scalar equations of projection, while the 
number of the unknowns is three (

1BBv , 
2BBv  and 

2Bv ). This fact is due to the unknown form of the 
trajectory of the contact point B . If the trajectory of the contact point is identified, as for the knife 
edge follower, then the direction of the velocity of point B  would be known and the two equations 
(4), considered separately, are sufficient for finding the motion from the higher pair and the motion of 
the follower, respectively.  
 As it can be observed from figure 3, the point B  is attached to the replacing element, the coupler of 
a four-bar mechanism, and therefore the trajectory is a coupler curve,  . Based on the remark that the 
replacing mechanism DCAC 21  is the same for any mechanism obeying the relation:     

ct21    (5) 

Pelecudi [8] proposes that, from substituting mechanisms, the one for which the coupler curve takes 
particular form should be used. Specifically, Pelecudi recommends the employment of the mechanism 
where the cam has the curvature radius 21    and the follower has the curvature radius 0 . 
Actually, from all mechanisms that have DCAC 21  as replacing mechanism, Pelecudi chooses the 
mechanism with cam and knife edge follower, the follower being represented by the 2DC  segment. In 
this case the curve   is reduced to an arch of a circle, trailed on both ways. The method is useful when 
only the motion of the follower is aimed.  
 In order to characterize the motion from higher pair, the equations (3) are subtracted member by 
member and the next relation is obtained: 

tt||
BBB

DB
2B 121

vvv 
  

(6) 

 By solving the equation (6) both the motion of the follower 
2Bv  and the relative motion from 

higher pair 
12BBv  are obtained. But the motion of the contact point from the cam and the follower 

remains undetermined. It can be remarked that, after finding 
2Bv  any of the equations (4) contains 

three unknowns: the absolute velocity of the contact point, completely unknown and the velocities of 
the point moving on the cam 

1BBv  and follower 
2BBv , respectively, parallel to the tangent tt . As seen 

from relation (3), these velocities are required for finding the Coriolis acceleration: 

2,12,1BB BB2,1
c v2a    (7) 



5

1234567890‘’“”

The 8th International Conference on Advanced Concepts in Mechanical Engineering IOP Publishing

IOP Conf. Series: Materials Science and Engineering 444 (2018) 052001 doi:10.1088/1757-899X/444/5/052001

 
 
 
 
 
 

and the normal components of relative accelerations:     
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(8) 

 Next, the graphical methodology for kinematical analysis of a mechanism is presented. In figure 4 
is presented the mechanism with cam and curved face follower to be analyzed, for which the replacing 
element is the rod 21CC  with the immobile contact point B  on it. The equation 6, written for the 
velocity polygon, has the form:     

211b2v bbbpbp   (9) 

  
 

 
 

Figure 4. The mechanism and the velocities and accelerations polygons 
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 In the velocity polygon the points 1b  and 2b  can be found, the velocity of the point  2B  is known 
and implicitly the angular velocity 2

~  of the follower, together with the relative velocity from the 
higher pair 

12BBv . Applying the kinematic similarity theorem for the points A , 1C  and 1B  the point 

1c  is found from similarity of triangles BAC1  and 11bac . In an analogous manner the position of the 
point 2c  from the follower is found from the similarity between BDC2  and 22bdc  triangles.  
 Applying the method for an actual case lead to the remark that the points 1c , 2c  1b  2b   are 
collinear, belonging to a straight line parallel to the tangent tt . The result is expected considering the 
fact that the points are situated on the normal nn  and on this direction the distanced between points 
are constant. With the points 1c  and 2c  known in velocity polygon, the position of the point c  is 
found based on the observation that the points 1C , 2C  and B  are attached to the replacing element. It 
results the conclusion that the point b  is in the same relation and ratio as the ones for the points 1C , 

2C  and B . To this end, the segment 21cc  is placed in a random position but with the end 2c  in the 
point 2C . A straight line parallel to 11cC  is traced through point B  and it intersects the segment 12cc  
in the point b ; the construction manner ensures the proportionality of the segments bc1  and bc2 , on 
one side and of the segments BC1  and BC2  on the other side. Now, the velocity distribution is 
completely known. 
 The equation (4) is applied twice, for points B  and 1B  first and B  and 2B  respectively, for finding 
the accelerations distribution: 
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(10) 

 The Coriolis accelerations C
BB 2,1

a  and the normal transport accelerations t
BB 2,1

a  are now known, 

being directed along the common normal, as shown in figure 4. The right members of the two 
equations are equaled and after some arrangements it results: 
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The equation (13) is written under the form: 
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and is formally identical to the equation of accelerations corresponding to the knife edge follower but 
with the remark that  c

1B2B
a , n

1B2B
a  are just notations, the relations for calculus being different from the 

one known fro the two terms. The correlated equation from the acceleration polygon is:   

  2BBBB11ABABa2DBDBa 'bnk'b'bnnp'bnnp
12121122

  (16) 

 In figure 4 is presented the method of working out the equation in acceleration polygon. There are 
found t

DB2
a  and implicitly the angular acceleration 2

~  together to the tangential component of relative 

acceleration 
12 BBa . Having the points 1'b  and 2'b  in the polygon, the points 1'c  and 2'c  are found 

analogous to the manner the points 1c and 2c  from velocity polygon were found, by constructing in 
the acceleration polygon the triangle 111 ABC~'c'b'a , and 222 DBC~'c'b'd  respectively. Lastly, the 
point 'b  is found from the condition similar to the one from velocities, specifically the point 'b  must 
divide 21 'c'c  in the same ratio as the point B  divides the segment 21CC . At this moment the 
kinematical analysis is completed. The other mentioned cases are solved in similar manners but with a 
series of particularly simplifications. For instance, for the flat face oscillating follower, the 
acceleration 

2BBa  is zero because the curvature radius of the follower is 2 . In the case of 

translating curved face follower, the acceleration c
BB2

a  is zero due to lack of rotation motion of the 

follower, 02  . Obviously, for the flat face translating follower the analysis is further simplified 
since both components 

2BBa  and c
BB2

a  vanish, from the above reasons.   

4. Conclusions 
The paper presents a grapho-analytical method for kinematical analysis of a cam plane mechanism of 
whatever type. If for the case of tip follower the grapho-analytical method is relatively simple to apply 
because the contact point between the cam and the follower is immobile on the follower’s profile and 
with a known trajectory, in the case of curved face follower, the contact point moves on both profiles, 
the cam’s and the follower’s profile, too. The absolute trajectory of the contact point is a complex 
curve, practically unknown, and therefore the direction of the velocity of the contact point is also 
unidentified.  
 The direct application of the equations which express the velocity/acceleration of the same point in 
two ways, provide a system of two plane vector equations with three unknowns, being therefore 
undetermined. The principle of the method consists in simultaneous consideration of both the actual 
mechanism and the replacing lower pair mechanism.  
 Thus, in the cam-follower contact point there always be superposed three points, first on the cam, 
the second on the follower and the third is attached to the replacing element. Applying the equations 
for velocity/acceleration of the point from the replacing element with respect to the 
velocity/acceleration of the points from the cam and follower, vector equation systems are obtained. 
After using appropriate mathematical manipulation, these equations allow for finding all kinematical 
parameters of the mechanism.  
 The method is exemplified for an actual case and is fairly expedite and therefore recommended for 
didactical activity, too.  
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