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Abstract. The purpose of the paper is to accomplish the kinematics study of a direct coupling 
between two shafts with a high pair joint, of point-surface type. Due to Hartenberg and 
Denavit, the kinematics analysis of spatial mechanisms can be made by a well-known method, 
named the “homogenous operators method”. This manner is applicable only for spatial 
mechanisms containing cylindrical pairs with particular solutions: prismatic pair and revolute 
pair. In order to apply the Hartenberg-Denavit procedure for the two shafts, the contact 
between the two shafts must be previously replaced by a succession of 5 prismatic and revolute 
pairs. It results a system of six trigonometric equations with six unknowns that requires a 
numerical methodology for solving it. The paper aims to obtain an analytical dependency 
between the motions of the two shafts. To this end, the geometrical condition that defines the 
connection between the two shafts is directly used. Thus, after all positional parameters are 
expressed in the same frame of reference an equation between the positional parameters of the 
two shafts is obtained.  

1. Introduction 
One of the major requirements of Mechanisms and machines theory [1-3] is to provide constructive 
solutions capable of transforming the given motion of a driving element into a desired motion of a 
final element. In this regard, is to be underlined the observation made by Hunt [4] about the structural 
optimization of a mechanism, showing that there isn’t a possibility of attaining the optimum structural 
solution by continuous passing through intermediate mechanisms; but, at the moment when a 
mechanism isn’t satisfying firm structural constraints it must be abandoned and a new solution should 
be adopted, the ingenuity of the designer being decisive in the new structural option. One of the most 
widespread challenges refers to complete mechanisms as simple as possible capable of transmitting 
rotation motion between two shafts with crossed axes. Dynamical and economical requirements 
impose that in the structure of the mechanism should be encountered the smallest number of elements, 
when feasible. In [5-6] it is shown that, when a direct contact between two shafts with crossed axes is 
envisaged to transmit the rotation motion, the only possible structural solution is represented by a class 
one pair. The respective pair is obtained in the mentioned work [5-6] by the contact between two 
straight lines, each one attached to the respective shaft. The weakness of this constructive solution 
resided from the fact that the curve-curve contact cannot be practically built using only two elements. 
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As shown in [7-10], the constructive assembly imposes an intermediate element and therefore the 
transmission is not actually a direct contact between the two shafts.  

The present work intends o solution for direct coupling of the two shafts by employing a class one 
pair of point-surface type. This pair can be materialized by the direct contact, as shown in figure 1, via 
introducing a sphere attached to one of the shafts into a prismatic groove having the width equal to the 
diameter of the sphere, cut into the second shaft. This ensures that the centre of the ball will 
permanently be placed in the plane of symmetric of the groove, figure 1.   
 
 

    
Figure 1. The design of point-plane pair    

2. Theoretical considerations 
Since in the structure of the mechanism from figure 1 only two mobile elements exist, the kinematics 
of the mechanism will be completely identified when the following dependence is known:  

)( 122    (1) 

where 2  is the position angle of the driven element 2 and 1  is the input angle of the driving element. 
 The kinematical analysis of spatial kinematical chains can be made by accepted methodologies 
presented in technical literature. The most known method is the homogenous operators method 
proposed by Hartenberg and Denavit, [11] that in principle involves the transformation relations of 
coordinates of a point when the reference system is changed. Considering a series of coordinate 
systems attached to the elements of kinematical chain, conveniently oriented and positioned, the 
coordinate transformation relations for a point are expressed when passing from a frame to another, 
following the natural order of linking the elements of the kinematical chain until the initial element is 
reached again. According to McCarthy [12] the coordinate transformation expressed in tridimensional 
space when changing from frame "1"  to frame "2"  must describe the axis translation using the 
displacement vector 12d  and the orientation of the new axis with respect to the old ones using the 
rotation matrix 12R . Denoting by 1x  and 2x  the position vectors of the same point with respect to the 
two systems, the following relation can be written: 

122121 dxRx   (2) 

The drawback of relation (2) consists in the fact that it has a inhomogeneous character due to the 
displacement vector 12d . To surpass this disadvantage, Hartenberg and Denavit propose writing the 
relation into the next form: 
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where )0,0,0(0 . The equation (3) can be written in contracted form:   

2121 XTX   (4) 

where:  

1  
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and 12T  is the operator characterizing the displacement of the new frame "1"  over the old frame "2" . 
The form (4) of coordinate transformation attests the homogenous character of the transformation 
relation. Next, a closed kinematical chain consisting of n  elements is considered, each element having 
an attached coordinate system, and with the convention that the "1n"   system is the same as "1" , by 
applying successively the relation 4, it results the following equation:            

1n1n,nn,1n23121 ...  XTTTTX  (6) 

Since: 

1,n1n,n

11n
TT
XX




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

 

(7) 

and the relation (6) is valid for any point, it results: 

41,nn,1n2312 ... ITTTT   (8) 

where 4I  is the unit matrix of fourth order. The equation (8) is the matrix closing equation for the 
kinematical chain. For the situation when in the structure of the kinematical chain only cylindrical 
pairs of the fourth class exist, with particular forms as revolute or prismatic, the convenient selection 
of the frames substantially simplifies the calculations.  
 

 
 

Figure 2. Hartenberg-Denavit convention 
 

To this end, as a step in applying the Hartenberg Denavit methodology, after denoting the elements 
according to the order of jointing, the kz  axis are chosen to be oriented along the pairs and the kx  xis 
to be oriented along the common normal of the axis 1kz   and kz , figure 2. The transformation from k  
to 1k   frame can be obtained via a roto-translation of parameters k , ks  around the axis kz  described 
by the matrix:  
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(9) 

followed by a roto-translation around the 1kx   axis expressed by the matrix: 


































1000

0cossin0

0sincos0

a001

)a,(
1k,k1k,k

1k,k1k,k

1k,k

1k,k1k,k



X

 

 

 

(10) 

3. Kinematical analysis of the mechanism 
A proposed solution for direct coupling of two shafts using a higher pair of first class is presented in 
figure 3 and a review of the possible solutions for obtaining this specific higher pair presented in [5-6]. 
For the present work, the point-surface alternative offered in [13-14] is preferred. The kinematical 
study of the transmission where the driving element is denoted 1  and the driven one 2 , aims finding 
the following dependence: 

 
 

Figure 3. Two shafts coupled via a point-surface pair of first class  

1z  

0z  

0x  

1x  

2x  

2z  

1r  
1s  

1  

1O  
2O  

02a  

12  

2n  

C  

O  

2  



5

1234567890‘’“”

The 8th International Conference on Advanced Concepts in Mechanical Engineering IOP Publishing

IOP Conf. Series: Materials Science and Engineering 444 (2018) 052002 doi:10.1088/1757-899X/444/5/052002

 
 
 
 
 
 

 

)( 122    (11) 

In order to apply the Hartenberg-Denavit method for the transmission shown in figure 2, the 
replacement of the mechanism with an equivalent one - having in structure only lower pairs with well 
defined axes, is required. Considering the fact that between the mobile elements a pair of first class is 
obtained, this is equivalent to a kinematical chain consisting in four elements and five pairs: three 
revolute and two prismatic pairs. Applying the Hartenberg-Denavit method to the replacing 
mechanism, the dependence between the position angle of the driven element and 1 , the position 
angle of the driving element is found. The disadvantage of the methodology consists in the fact that, 
for obtaining the relation (11), all the motions from the pairs of the replacing mechanism must be 
established even if these dependencies have no physical significance.  

Next it will be proved that the study of the mechanism can be simplified considerably by direct 
employment of the constraint imposed by the kinematical pair between the mobile elements of the 
mechanism. To this end, the constructive and kinematical parameters of the mechanism are specified, 
as in figure 1. Three coordinate systems are considered: the frame "0"  attached to the ground, "1"  
fixed to the driving element and "2"  fixed to the driven element. The 1z , 2z  axes are chosen 
according to Hartenberg-Denavit convention, along the axes of revolute pairs made with the ground. 
The 0x  axis of the ground is directed along the common normal of 1z  and 2z  axes. The origin O  is 
the foot of the common normal from the 1z  axis. The 0Oz  axis is normal to the plane made by 1Oz  
and 0Ox . The origin 1O of the frame 1  is placed on the axis 1z  at a distance 1s  (with sign) from the 
origin of the immobile frame. The 11xO  axis is defined by the 1O  point and the contact point C  where 
the higher pair is completed. The distance from the rotation axis 1r  1z  to the C  point, 1r  is a constant 
given that it is a constructive parameter of the transmission. Finally, the last frame has the 2O  origin 
positioned in the other foot of common normal and the 2z  axis is directed along 2n  - the normal to the 
plane involved in the higher pair construction. The existence of the higher pair in the structure of the 
mechanisms imposes the geometrical constraint that the contact point C  positioned on the element 1  
is simultaneously placed in the plane attached to the element 2, permanently. An arbitrary point having 
the vector of position r  in the plane of normal n  passing through the point with the position vector 0r  
is considered. The equation of the plane in vectorial form is:    

0)( 0  rrn  (12) 

The plane attached to the driven element always passes through the point 2O  . The condition that 
the point C  is contained into the plane P  is written, according to relation (12) as:  

0)( 2OC  rrn  (13) 

The relation (13) can be used only if all the vectors are expressed by their projections on the axes 
of the same frame. In the current case, the vectors are expressed in the 0" "  system, attached to the 
ground. The contact point C  is known by the components in the frame 1" "  and the position vector is:   

 T11 100rC X  
(14) 

The operator that overlaps the system 0" "  over the system 1" "  has the following matrix: 

)s,()0,2/( 1101  ZXT   (15) 

The position vector of the point C  in the immobile system after the transformation is:   
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(17) 

In order to express the components of the 2n  normal in the frame "0" , the point N  is chosen on 
the axis 22xO , with the coordinates:    

 T22 100rN X  
(18) 

The superposition of the "0"  frame over "2"  frame is described by the matrix:    

)s,()a,( 22020202  ZXT   (19) 
 





















 













































 


























1

sinsinr

sincosr

acosr

1

0

0

r

1000

0100

00cossin

00sincos

1000

0cossin0

0sincos0

a001

N
2022

2022

02222

22

22

0202

0202

02

0













X

 

(20) 

Based on figure 3, it can be noticed from relation (20) that: 

2/1202    (21) 

In the fixed system, the 2O  point has the coordinates: 

 100a2O 020 X  (22) 

Now, using the above expressions, the relation 13 becomes: 

0)2OC()2ON( 0000  XXXX  (23) 

and expressing it by explicit manner it takes the form: 

0sincosscosar)sinsinsincos(cos 20212021120212    (24) 

The equation (24) allows for finding the sought after dependency )( 122   , specifically: 
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The occurrence of the function )xtan(a  in relation (25) leads to discontinuities in the graphical 
representation of the 2  function. To obtain a continuous variation of 2  the following function is 
used to replace it: 
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(26) 

The plots of the two functions (25) and (26) are presented in figure 4.  
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Figure 4. The position angle of the driven element 

 
The validity of relation (26) was tested by modeling the mechanism in CAD software, with the 

following constructive data: 60a02   (mm); o
02 120 ; 70r1   (mm); 50s1   (mm).   

The figure 5 presents in comparative manner the variations of 2  angle versus the position angle of 
the driving element.   

 
Figure 5. Comparison between numerical and analytical results  

The relation (25) is differentiated with respect to time and divided by 1 ; the expression of the 
transmission ratio of the mechanism is obtained: 
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(27) 

Two comments should be done about the expression (27): the denominator is positive or equal to zero, 
the equality to zero assumes both parenthesis are simultaneously null: 
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Solving the system (28) with respect to 1r  and 1s , it results:   
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(29) 

representing the parametric equations of the self-locking curve from )s,r( 11  plane. An actual case of 
self-locking curve is presented in figure 6.    

    
Figure 6. Self-locking curve 

The shape of the self-locking curve leads to the conclusion that, for any value of the parameter 1s  
there is a value of parameter 1r  for which the mechanism is locking and the reverse is also valid.     

The second comment refers to the sign of the transmission ratio.  It can be observed that the entire 
kinematics of the mechanism is ruled by the values of: 02 , 021 a/r , 021 a/s .  In figure 7 is presented 
the variation of the transmission ration for a constant angle 02   and all possible situations for the 
values of the parameters 1s  and  1r  versus 20a . From figure 7 it can be remarked that, for a given pair 
of values for parameters 1r , 1s , the motion of the driven element is oscillatory when the transmission 
ratio changes its sign or of continuous rotation for constant sign of the transmission ratio.  

Following this observation, for a designer is useful to identify which type of the motions of the 
mechanism is obtained when the constructive parameters 1r  and 1s  are adopted.  To this purpose, for a 
finite set of numbers b  with 1N   elements, the following function is defined: 
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0k
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(30) 

Obviously, when all the elements of the set are positive, 1   and when all elements are negative, 
1 . If at least two elements have dissimilar signs, it results: 

1||   (31) 

For the considered mechanism, the transmission ratio is regarded as a function of 1 , 1s and 1r  
parameters:      

)r,s,(ii 1111212   (32) 

The variation domains of the three variables are discretised and the following matrix is defined:  
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(33) 

where N  is the number of sub-intervals of a complete rotation of the input shaft. 
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Figure 7. The effect of constructive parameters upon the transmission ratio of the mechanism 

The motion of the output element will be a continuous rotation motion in all the situations when the 
elements of the matrix   are equal to unit. In all the other points the motion will be an oscillatory 
one. In figure 8.a there are presented the spatial plot of the   matrix and the level curves and in figure 
8.b, there are evidenced the domains of rotation and oscillatory motion. The boundary between the two 
domains is the self-locking curve from figure 6.      



10

1234567890‘’“”

The 8th International Conference on Advanced Concepts in Mechanical Engineering IOP Publishing

IOP Conf. Series: Materials Science and Engineering 444 (2018) 052002 doi:10.1088/1757-899X/444/5/052002

 
 
 
 
 
 

 

a) 
 

b) 
Figure 8. Finding the domains of oscillation and rotation of the driven element 

4. Conclusions  
The paper proposes a mechanism designed to transmit the motion between two shafts with crossed 
axes. The proper motion is accomplished by means of a class one pair of point-surface type. In 
contrast to other constructive solutions where the higher pair is obtained via two contacting curves, the 
present case materializes the higher pair without the employment of a intermediate element. The 
Hartenberg-Denavit transformation relations are applied to express the geometrical constraint that 
defines the higher pair in the ground frame and the analytical dependence of between the rotations of 
the two shafts is obtained. Subsequently the self-locking condition of the mechanism is established 
and there are identified the variation domains of constructive parameters where the driven element 
performs oscillatory or rotational motions.  
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