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Abstract. A numerical simulation has been performed to study the biogas combustion in a
burner with premixed flame developed under a high intensity small-scale turbulent
environment, corresponding to high Karlovitz conditions. The CFD simulations were validated
against experimental data for burner running with methane (measured temperatures along the
radiant tube and CO emission). The biogas combustion was compared with methane
combustion and influence of excess air on combustion was observed. It has revealed that the
combustion of biogas with excess air of 1.15 is similar to combustion of methane with same
excess air, except the CO concentration which is lower for biogas. Increasing the excess air for
biogas combustion leads to the change of flame front position, temperature distribution and
higher CO concentration.

1. Introduction

It has been shown that burning of biogas in commercial burners is not feasible due to the impossibility
of achieving combustion stability [1]. Combustion of low calorific value fuel gases (synthetic gas
derived from coal or biomass, anaerobic digester gas, gases generated from steelworks: blast furnace
gas and coke oven gas) is characterized, due to the high content of inert gas and composition variation
by a very low combustion temperature, unstable flame and an incomplete burn-out when conventional
combustion technologies are used and no other fuel is used as support fuel. The high levels of NOy
emissions are another problem. Several combustion technologies have been developed for low
calorific fuels. The flameless technique has been investigated on different gaseous fuels like methane,
ethane as well as biogas. Flameless combustion is also known as colourless distributed combustion,
flameless oxidation, moderate or intense low oxygen dilution combustion or high-temperature air
combustion (HiTac) [2]. Flameless combustion technology is appropriate for industrial systems like
glass-making factories, cement industries, gas turbines, hot blast stoves, boilers and biogas flare
systems. Gaswarme-Institute. V. Essen (GWI) developed a progressive combustion system based on
the concept of flameless and continuous air staging (COSTAIR) [3]. The results have shown the
potential of the burner to be used for several low calorific gas qualities. The combustion process is
stable and achieved NOx and CO emissions are lower than 20 ppm (3% O,).

The main scope of this work is to develop a burner able to ensure a highly efficient, low-emissions
and stable combustion of low calorific gaseous fuels. The very intensive mixing of fuel and
combustion air and the prolonged contact between the unburnt mixture and the combustion products in
the proposed combustion chamber design result in a stable flame without supporting fuels at a wide
range of thermal loads. The premixed flame is developed under a high intensity small-scale turbulent
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environment, corresponding to high Karlovitz conditions [4]. Due to the heat transfer process in the
flame near the cold burner wall the flame stabilization is achieved. The low oxygen levels required for
the complete combustion in case of high turbulent combustion processes along with reduced flame
temperature lead to reduced NOy generation.

To analyse the combustion characteristics of biogas, a three dimensional (3D) computational fluid
dynamic (CFD) study has been performed. The developed CFD model was first validated against
experimental data (measured temperatures along the radiant tube and measured CO emissions) for
burner operation with methane. The biogas combustion is compared to the methane combustion and
the effects of excess air on combustion characteristics are observed and discussed.

2. Numerical modelling

2.1. Geometry

A three-dimensional CAD model of the combustor was created, based on the following main
dimensions: total diameter D=250 mm, total length L=500 mm, first and fourth chamber length
1;=1,=100 mm, second and third camber length [>=1=150 mm; all inter-combustion chamber
diaphragms have d; = 100 mm; the air inlet has a rectangular section of 70 x 70 mm, the fuel inlet has
a circular section with di = 10 mm, and the mixture is tangentially forced into the first combustion
chamber through a 70 x 15 mm reduced section. An overall wall thickness of 2 mm was considered.
This was explicitly included in the model only for the diaphragms, all other wall thicknesses were
accounted for implicitly in the numerical modelling phase. The combustor is made of nickel-
chromium alloy.

Figure 1 presents a cut-away view of the geometrical model. The 250 mm outlet section of the
model — a cylindrical body generated by sweeping the 4™ chamber outlet section outwards, introduced
for reducing the influence of the outlet boundary condition on the interior of the combustion chamber
— is missing in this representation, but it can be observed in the mesh plots. One can notice that certain
edges have been rounded (r=5 mm), specifically at the inlet pipe - combustion chamber wall
intersection. This feature is meant to alleviate the typical issues encountered during the meshing
process of such geometries and has no influence on the final results.

Figure 1. Cut-away view of the combustor CAD model.

2.2. Discretization mesh

Given the strongly non-linear character of the numerical problem to be solved, and the intended
application of a scale-resolving turbulence modelling approach, the global quality of the mesh was
considered to be of absolute importance. Therefore, no effort was spared during the design and
creation of the mesh. The primary goal was to ensure high mesh size uniformity over the combustion
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chamber volume, with adequate local density in the regions of interest (Figure 2). Taking advantage of
the mostly cylindrical shape of the flow domain, which could be easily decomposed into simple
volumes, a multi-block structured meshing approach was made possible in almost all regions, with few
exceptions. The remaining zones were meshed using swept meshing algorithms, according to the
locally dominant geometrical direction. Only the inlet pipe - combustion chamber wall intersection
area had to be meshed with a combination of prismatic & tetrahedral cells. The maximum resulting
edge length in the circumferential direction is 3.2 mm, while the maximum edge length parallel to the
chamber axis is 2 mm. Due to the O-grid decomposition in the core region of the combustion chamber,
the local resulting cell size is nearly uniform and around 1 mm. The near-wall mesh resolution was
fixed at 0.5 mm, with a maximum growth ratio of 1.2. The secondary goal was to tightly control the
cell skewness. The orthogonal shape of the grid blocks and the careful decomposition of the
unstructured regions implicitly ensured a very high mesh quality (see Table 1).

Table 1. Mesh characteristics.

Mesh Statistics Mesh Quality
Nodes Faces Cells Min. Skew Max. Skew Avg. Skew
6170654 19494907 6681064 0.0 0.6692 0.0557

Figure 2. The spatial discretization mesh.

2.3. Physical modelling

2.3.1. Flow & turbulence

The high global physical instability of the rotational flow inside the combustion chamber, with very
large pressure, density, velocity and temperature gradients across the entire flow field, consistently
induced corresponding numerical instabilities and impeded any attempt to obtain a properly converged
steady-state numerical solution. This effect was amplified by the low-dissipation spatial discretization
schemes necessary for the scale-resolving (SR) flow modelling approach. Consequently, a steady-state
RANS (Reynolds-Averaged Navier-Stokes) flow model was used only as a fast and robust numerical
solution initialization step. The actual numerical solutions were determined based on a full unsteady
N-S model coupled with the SAS (Scale-Adaptive Simulation) SST (Shear-Stress Transport) k-omega
turbulence model [1]. The SAS concept [2] is based on the introduction of the von Karmén length-
scale into the turbulence scale equation. The information provided by the von Karméan length-scale
allows the SAS model to dynamically adjust to resolved structures in a URANS simulation, which
results in an LES-like behaviour in unsteady regions of the flow field. At the same time, the model
provides standard RANS capabilities in stable flow regions. It must be noted this flow instability
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sensitivity is, by model definition, linked to the local mesh resolution and the time-step size, i.e. if the
mesh is not fine enough and/or the local Courant number is too high, the predicted flow field will
automatically revert to steady-state behaviour. Consequently, a much finer mesh than typically used
for steady RANS simulations is necessary, but well below the requirements of a true Large-Eddy
Simulation. The greatest advantage of SAS is, however, the physically consistent mathematical
formulation of the unsteady term, which shields the model against improper application, allowing the
user to better adapt the numerical simulation parameters (within certain limits) to the available
hardware and time resources.

2.3.2. Species transport & reaction

The particular simulated combustion chamber can be considered a partially-premixed system due to
the limited mixing of the fuel and air streams at the entrance of the first chamber. From a numerical
point-of-view, a turbulent non-premixed type combustion system can be ideally simplified to a mixing
problem (“mixed-is-burnt”), which translates into a greatly reduced computational effort as well;
however, the partially or fully premixed systems are significantly more difficult to simulate due to the
presence of a flame front, for which the propagation speed and position must also be predicted. For a
given temperature and pressure, the laminar flame speed depends mainly on the local mixture
composition, but the problem is more complicated than that for turbulent flows, because the local
turbulence of the flow field plays a determinant role, and the effective flame speed can be significantly
enhanced. Moreover, if turbulence is too high, the flame can be quenched, which adds to the
complexity of the numerical problem. A first assumption was made that the finite-rate chemical
kinetic effects are not important, which is a good approximation if slow chemical species evolution,
like nitrogen oxides, are ignored. Furthermore, if the chemical scales of the reacting species are of the
same order of magnitude, and the reaction itself is mainly limited to the flame front, the problem can
be quite well approximated by tracking only the flame front propagation. One of the available models
specifically designed for such approach is the C-Equation model, which solves a transport equation for
the density-weighted mean reaction progress variable, denoted by T :

%(pf)ﬂx(p\ﬁ)=VX{(CL+S”—C‘]VC]+/OSC (1)

The progress variable is defined as a normalized sum of the product species mass fractions:
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where superscript u and eq denote the unburnt reactant and chemical equilibrium, respectively. Based
on this definition, unburnt mixture means c=0, whereas burnt mixture means c=1. The mean reaction
rate in equation (1) is modelled as:
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where Uy is the turbulent flame speed (TFS). The model used in all the calculations for estimating TFS
was the Zimont TFS closure model [3]. The flame stretch effect has also been included [4], which
multiplies the source term for the progress variable with a stretch factor G representing the probability
that the stretching will not quench the flame. The critical flame strain rate was set to 3000 1/s, at the
lower bound for the typical range of near-stoichiometric methane flames [5].

Having taken care of the flame front position tracking problem, the remaining issue is the
chemistry itself. One of the most elegant modelling approaches, from the engineering point-of-view,
available for the simulation of flame front chemistry is the FGM (Flamelet-Generated Manifold)
model [6]. The FGM model assumes that the thermo-chemical states in a turbulent flame are similar to
the states in a laminar flame, and parameterizes these by mixture fraction and reaction progress.
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Within the laminar flame, reaction progress variable (c) increases from 0 in the unburnt reactants to 1
in the burnt products, over a non-zero flame thickness. A point within the turbulent flame brush with 0
< ¢ < 1 has contributions from both fluctuating flame fronts, as well as the intermediate reaction
progress. The FGM can be modelled with either premixed or diffusion laminar flamelets; both variants
were tested, but only the results corresponding to the diffusion laminar flamelets approach are
presented herein. A very important property of the FGM model is the theoretical capability to model
not only the stirred reaction limit, but also the extreme flame states: ignition and extinction.

The flamelets were generated using the flamelet generator included in the simulation platform,
starting from a reduced version of the GRI-MECH 1.2 reaction mechanism [7] that contains 19 species
(+ N2) and 84 reactions. The GRI mechanism is primarily intended for the simulation of natural gas
combustion in air and, for example, is able to predict with reasonable accuracy the concentration and
evolution of carbon monoxide. The PDF (probability density function) integrations were also taken
care of outside the main computation, using the dedicated pre-processor. The generated files — reaction
mechanism, flamelets file, and PDF file — were written to disk and reused for all computations. This
method is valid as long as the chemical composition of the fuel remains within the limits of the
original reaction mechanism derivation assumptions. Even with such a relatively complex reaction
mechanism, the FGM combustion model is very low-demanding in terms of computational resources,
especially compared to a Finite-Rate/Eddy-Dissipation-Concept approach, because it replaces direct
chemical reaction integrations (very costly) with multi-dimensional table look-up operations.

To summarize, the FGM method is essentially a reduced-order modelling (ROM) technique,
potentially very accurate, provided that the basis of reduction, i.e. the reaction mechanism and the
flamelet calculation assumptions are valid, and computationally much cheaper than the full-scale
physical system from which it originates.

2.3.3. Heat transfer

In order to obtain results comparable to the available experimental data, heat transfer inside the
combustion chamber and at the computational domain boundaries had to model accordingly. The
conductive and convective heat transfer is automatically handled by the solver, in both fluid and solid
zones (internal diaphragms). Because the external walls of the combustion chamber were not explicitly
included in the geometrical model, and consequently not present in the mesh either, the conductive
heat transfer in the external walls volume was implicitly taken care of using the Shell-Conduction
Model (SCM). The model automatically constructs a number of n layers with a given thickness and
material properties, as specified by the user, by extruding the external wall faces outwards. This way,
the effect of in-plane conduction, heat accumulation and thermal inertia of the chamber walls is
accounted for. The external heat losses are also considered, in the form of both convection and
radiation, with a reference temperature Trr= 300 K. The convective heat transfer coefficient (HTC) for
all external surfaces was estimated based on the assumption that only natural convection is taking
place. The total emissivity values assigned to solid surfaces (0.75) is typical for cold-rolled steel
sheets. The radiative heat exchange between internal surfaces was modelled by employing the DO
(Discrete-Ordinates) grey radiation model. Although it is quite an expensive model, especially at
higher discretization (for all cases, a 3 x 3 discretization per quadrant, with a 3 x 3 pixilation was
assigned, which translates into 36 principal directions and just as many transport equations to solve!) it
is the only reasonable solution for the investigated cases. This is due to the small optical thickness of
the combustion chamber, which invalidates the use of simpler and less intensive radiation models, like
Rosseland or P-1; on the other hand, the presence of radiation absorbing gases, like CO, and H>O in
the gaseous mixture, most notably for the biogas combustion cases, means that the significantly more
economical, but similarly accurate S2S (Surface-to-Surface) radiation model is not applicable. The
absorption coefficient, which is a function of local gas composition, was computed using the Weighted
Sum of Grey Gases Model (WSGGM) with a domain-based length scale.
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2.3.4. Physical modelling summary
Tables 2 and 3 presents a summary of all material properties and physical models used for the
numerical simulations.

Table 2. Material Properties.

Property Units Mixture Species
Density kg/m3 PDF -
Specific Heat J/kg/K Mixing-law Polynomial
Thermal Conductivity Wim/K Polynomial -
Viscosity Pa‘s Polynomial -
Radiation Absorption Coeff. - WSGGM -
Radiation Scattering Coeff. - 0 -
Adiabatic Unburnt Mixture Density kg/m3 Pre-PDF Polynomial -
Adiabatic Unburnt Mixture Temperature K Pre-PDF Polynomial -
Unburnt Mixture Specific Heat J/kg/K Pre-PDF Polynomial -
Unburnt Mixture Thermal Diff. m?/s Pre-PDF Polynomial -
Laminar Flame Speed m/s Pre-PDF Polynomial -
Critical Flame Strain Rate 1/s 3000 -

Table 3. Physical Models.

Flow Unsteady Reynolds-Averaged Navier-Stokes Model
Turbulence SAS SST k-omega Model
Heat Transfer Fluid Zones Convective + Conductive Heat Transfer
Solid Zones Conductive Heat Transfer
Solid Surfaces Radiative Heat Transfer
Shell Conduction Model (only external surfaces)
Combustion Partially-Premixed Model C-Equation Model

Zimont Turbulent Flame Speed Model
Flamelet-Generated Manifold Model

2.4. Numerical solver

Although the introduction of reduced-order modelling of chemical interactions through FGM virtually
eliminates the characteristic stiffness associated with the solving of chemical species conservation
equations, and implicitly reduces the non-linearity of the global system of equations, the very strong
coupling between pressure, density and temperature of the burning mixture still exists.

For steady-state CFD simulations of such systems usually coupled implicit solvers are used. They
feature very good stability and excellent convergence properties, especially the pressure-based
variants. The main drawback of these solvers is their large memory footprint and high CPU
requirements. For unsteady simulations, a low CPU and memory demanding numerical solver is
generally advisable in order to reduce the overall computational effort, as a very high number time-
steps and sub-iterations respectively, need to be performed, particularly for problems where
statistically-steady solutions are to be obtained. Both a pressure-based implicit segregated solver and a
pressure-based coupled implicit solver were employed during the testing phase of this study. For each
type of solver, the optimal parameter setup for best stability and convergence has been separately
determined. The observed behaviour during the trial simulations indicated that the coupled solver
needs only little or no explicit under-relaxation of variables, reaches the same level of convergence per
time-step in half as many sub-iterations or less, but it requires slightly more wall-clock time per time-
step compared to the segregated approach. Far more importantly though, it also provides significantly
better numerical stability, and for this reason it was preferred and consequently applied for all
simulations. The spatial discretization schemes for each variable were chosen as presented in Table 4.
With the exception of DO irradiation, all other variables discretization schemes are at least second
order accurate in space. Given the importance of the momentum equation discretization, a bounded
central differencing scheme was adopted for momentum, which has a significantly lower dissipation
than a second-order upwind scheme. This increases the sensitivity of the numerical model to local
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flow instabilities and enables the simulation to capture a much richer instantaneous velocity spectrum
for a given time-step size. This, in turn, has a positive effect on the estimation of, for instance, the
local turbulent flame velocity, and implicitly on the instantaneous position of the flame front. For the
same reasons, a bounded second-order accurate backward Euler time integration scheme was selected.

Table 4. Discretization Schemes.

Under-relaxation

Pressure Second-order Upwind 0.75
Momentum Bounded Central Differencing 0.75
Density Second-order Upwind 1
Space  Turbulence Second-order Upwind 0.75
Discrete Ordinates First Order Upwind 1
Energy Second-order Upwind 1
Species Second-order Upwind 1
Time Bounded Second-order Upwind -

3. Numerical simulation

3.1. Boundary conditions

Due to the need to strictly control the total flow rates and composition of combustible mixture and the
reaction conditions (mainly chamber pressure), the only available combination of boundary conditions
(BC) that satisfy the requirements is “mass-flow-inlet” + “pressure-outlet”. The inlets for
methane/biogas and air have been separately represented in the numerical model (see Figure 3), which
allows for a direct control of the flow ratio and inlet temperatures. All cases were setup with a static
pressure at chamber outlet equal to the atmospheric pressure, and the temperature of both inlet fluxes
equal to 300 K. The internal walls condition was implicitly setup as thermally coupled, and
consequently all heat transfer parameters were automatically computed by the solver. The only
parameter that was imposed was the total surface emissivity, specified as 0.8 for all solid surfaces. On
the external walls a combined heat transfer through radiation and convection was defined. The
reference background/exterior temperature for both radiative & convective heat exchange was taken as
300 K. The convective HTC was estimated to be around 5 W/m/K, which is typical for free convection
in air. With this setup, quite strong and chaotic fluctuations of the calculated unsteady inlet static
pressure have been observed, particularly at early stages of the simulations; as the mean values of flow
variables were settled, the pressure fluctuations also manifested a tendency towards a steady average
value, but were far from being removed, only dumped to a certain extent. This is probably a numerical
effect of the boundary condition combination, which keeps the instantaneous mass flow rate fixed,
forcing the unwanted oscillations in the pressure field. An attempt to replace the mass-flow-inlets with
pressure-inlets was made, but with little success, and was therefore abandoned. The boundary
conditions setup for the four cases included in this study is presented in Table 5.

Table 5. Boundary Conditions (Qcha=10Nm?®/h in all cases).

Methane Biogas Biogas Biogas
A=1.15 A=1.15 A=1.20 A=1.25
Inlet Air Mass Flow [g/s] 36.00 36.00 37.57 39.13
Temperature [K] 300 300 300 300
Inlet Fuel Mass Flow [g/s] 1.822 5.931 5.931 5.931
Temperature [K] 300 300 300 300
Outlet Static Pressure [Pa] 0 0 0 0
Walls Radiation, ¢ 0.8 0.8 0.8 0.8

Convection, o [W/m/K] 5.0 5.0 5.0 5.0
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3.2. Numerical simulation

All cases were initialized using the results of a steady-state calculation. This is not only useful for
drastically reducing the amount of time needed to reach statistically steady flow conditions inside the
combustion chamber, but also mandatory for the initialization of correct solid walls temperature. This
is due to the fact that the unsteady simulations time scales are far too short to allow for the solid walls
temperature to reach a statistically steady state (flow time scale is less than 0.1 s, solid time scale is
well above 10 s, so a discrepancy of at least two orders of magnitude). To smooth out the transition
between the steady and unsteady models, the SST k-omega model was used for turbulence in steady
mode and switched to the SAS variant once the unsteady mode was activated.

Also for reducing the total computational effort, the time-step size was initially chosen larger than
optimal for settling down the response of the transient model and more quickly reach the statistically
steady regime. Once this regime was established, judged by monitoring several parameters of the
model such as the burnt gases outlet temperature, or the concentration of certain chemical species, like
CO, the time-step size was reduced such that the maximum instantaneous Courant number in the entire
flow domain did not exceed a value of 10 (this ensured a volume-averaged Courant number of about 5
over the chamber core and less than 2 for the entire chamber — this is perfectly acceptable for the SAS
model, as previously explained, but an order of magnitude higher than the requirements of LES) and
the calculation was resumed. After reassessing the quasi-steady operational regime, the simulations
were run for an additional 5,000 time-steps, during which period the solution was monitored and
statistical data was gathered for all variables of interest, including pressure, velocity, temperature, heat
fluxes, chemical species concentrations, reaction rates, etc. For example, the final time-step used for
Case 1 calculation was 5.e-5 s, and the resulting total sampling time was 0.25 s, which is equivalent to
approximately two times the average fluid residence time for the simulated conditions.

The calculations were run accessing between 192 and 384 cores per case within the existing 624
core HPC Cluster.

4, Computational results

The computational results obtained for two different fuels, methane and biogas, are included below
(Figures 3-20). The composition of biogas was simplified to a mixture of 55% methane and 45%
carbon dioxide, by volume. For all computational cases the volumetric flow rate of the methane
fraction was identical and equal to 10 Nm*/h. In the case of biogas, three air-fuel ratios have been
tested, while for methane only one air-fuel ratio is presented. A table summarizing the main outputs of
each case is available, containing the time & area-averaged values for: chemical species of interest and
their concentration as mass fractions, mixture temperature and static pressure, as determined by
numerical simulation at the two inlets and the four outlet openings of each individual section of the
combustion chamber (Tables 6-9).

Table 6. Results for case 1 (Methane, Qcxa = 10 Nm¥/h, A = 1.15).

Section CHe co O, Ha H20 o TIKI  ps[Pa] “["gF/S
Inlet_air 0.0 0.0 0.0 0.0 0.0 2.330E-01 300 2656 36.00
Inlet_fuel 1.0 0.0 0.0 0.0 0.0 0.0 300 2694 1.822
Chamber-1_out 2.136E-04 1.703E-02 1.279E-01 5.755E-04 1.203E-01 8.214E-03 2038.1 356.4 -
Chamber-2_out 3.691E-09 1.746E-02 1.284E-02 5.568E-04 1.208E-01 6.351E-03 1839.2 196.8
Chamber-S_out 7.923E-11 1.459E-02 1.320E-01 4.537E-04 1.213E-01 5.438E-03 1655.9 90.4
Chamber-4_out 4.289E-10 1.313E-02 1.332E-01 4.079E-04 1.209E-01 6.039E-03 1556.3 19.5

"MFR — mass flow rate
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Figure 3. The instantaneous (left) and time-averaged (right) contours of velocity magnitude on an
axial plane.

ANSYS ANSYS

71
[l
Acadenic sasanic

@R R LIPS TS g R P s R I g .
L - T I e el

Velocity [msr1] Velocity Travg [ms™1)

Figure 4. The instantaneous (left) and time-averaged (right) contours of velocity magnitude on a
normal plane passing through the inlet pipe.
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Figure 5. The instantaneous (left) and time-averaged (right) contours of temperature on an axial plane.
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Figure 6. The instantaneous (left) and time-averaged (right) contours of temperature on a normal
plane passing through the inlet pipe.



The 8th International Conference on Advanced Concepts in Mechanical Engineering IOP Publishing
IOP Conf. Series: Materials Science and Engineering 444 (2018) 082009 doi:10.1088/1757-899X/444/8/082009

ANSYS ANSYS
w71 RI71
adenic Kadenic

FFE SIS I FF LS IS L FELESESI IS ST I EE L

o7 OV 0V o7 oV oY o o o7 o oF oF
I - I - aaE——
Mean Mass Fraction Of Co Mean Mass Fraction Of Co

Figure 7. The time-averaged contours of CO mass fraction on an axial plane (left) and on a normal
plane passing through the inlet pipe (right).
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Figure 8. The time-averaged contours of temperature on solid walls.

Table 7. Results for case 2 (Biogas, Qcra = 10 Nm¥h, A = 1.15).

Section CH, CO CO, H, H,0 0, T[K] pst [Pa] MFR [g/s]
Inlet_air 0.0 0.0 0.0 0.0 0.0 2.330E-01 300 2789 36.00
Inlet_fuel 3.082E-01 0.0 6.918E-01 0.0 0.0 0.0 300 3025 5.931
Chamber-1_out 1.170E-04 1.217E-02 2.239E-01 2.278E-04 1.063E-01 1.005E-02 1886.8 306.6 -
Chamber-2_out 1.795E-10 1.092E-02 2.252E-01 1.940E-04 1.064E-01 9.376E-03 1701.1 164.7 -
Chamber-3_out 1.074E-10 9.797E-03 2.249E-01 1.735E-04 1.057E-01 1.056E-02 1520.4 79.1 -
Chamber-4_out 5.488E-10 8.967E-03 2.244E-01 1.585E-04 1.050E-01 1.169E-02 1427.0 217 -
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Figure 9. The time-averaged contours of velocity magnitude on an axial plane (left) and on a normal
plane passing through the inlet pipe (right).
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Figure 10. The time-averaged contours of temperature on an axial plane (left) and on a normal plane
passing through the inlet pipe (right).
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Figure 11. The time-averaged contours of CO mass fraction on an axial plane (left) and on a normal
plane passing through the inlet pipe (right).
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Table 8. Results for case 3 (Biogas, Qcrs = 10 Nm*/h, A = 1.20).

Section CH, CO CO, H, H,O 0, T[K] pst [Pa] MFR [g/s]
Inlet_air 0.0 0.0 0.0 0.0 0.0 2.330E-01 300 6000 37.57
Inlet_fuel 3.082E-01 0.0 6.918E-01 0.0 0.0 0.0 300 6232 5.931
Chamber-1_out 1.388E-02 8.004E-03 1.839E-01 1.469E-04 7.251E-02 7.057E-02 1557.8 508.7 -
Chamber-2_out 1.139E-04 1.272E-02 2.133E-01 2.354E-04 1.014E-01 1.933E-02 1884.8 236.6 -
Chamber-3_out 1.116E-09 1.068E-02 2.154E-01 1.956E-04 1.014E-01 1.863E-02 1711.5 115.9 -
Chamber-4_out 6.414E-10 1.049E-02 2.148E-01 1.921E-04 1.011E-01 1.933E-02 1602.5 34.8 -
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Figure 12. The time-averaged contours of temperature on solid walls.
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Figure 13. The time-averaged contours of velocity magnitude on an axial plane (left) and on a normal
plane passing through the inlet pipe (right).
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Figure 14. The time-averaged contours of temperature on an axial plane (left) and on a normal plane
passing through the inlet pipe (right).
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Figure 15. The time-averaged contours of CO mass fraction on an axial plane (left) and on a normal
plane passing through the inlet pipe (right).
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Figure 16. The time-averaged contours of temperature on solid walls.
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Table 9. Results for case 4 (Biogas, Qcrs = 10 Nm*/h, A = 1.25).

Section CHa CcO CO2 H> H20 (07 T[K] pst[Pa] MFR [g/s]
Inlet_air 0.0 0.0 0.0 0.0 0.0 2.330E-01 300 6621 39.13
Inlet_fuel 3.082E-01 0.0 6.918E-01 0.0 0.0 0.0 300 6851 5.931
Chamber-1_out 1.379E-02 6.667E-03 1.755E-01 1.182E-04 6.817E-02 7.941E-02 1511.1 543.7 -
Chamber-2_out 3.005E-04 1.210E-02 2.033E-01 2.169E-04 9.642E-02 2.944E-02 1833.6 252.5 -
Chamber-3_out 3.305E-09 8.256E-03 2.106E-01 1.508E-04 9.803E-02 2.503E-02 1681.0 122.3 -
Chamber-4_out 1.713E-08 8.183E-03 2.119E-01 1.492E-04 9.860E-02 2.389E-02 1574.2 39.0 -
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Figure 17. The time-averaged contours of velocity magnitude on an axial plane (left) and on a normal
plane passing through the inlet pipe (right).
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Figure 18. The time-averaged contours of temperature on an axial plane (left) and on a normal plane
passing through the inlet pipe (right).
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Figure 19. The time-averaged contours of CO mass fraction on an axial plane (left) and on a normal
plane passing through the inlet pipe (right).
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Figure 20. The time-averaged contours of temperature on solid walls.
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5. Results analysis

The instantaneous plots are shown only for the first case, pure methane, for direct comparison with the
corresponding time-averaged plots. The relatively large time-step size inevitably introduces a certain
level of damping on the velocity field, and consequently on all fields, but even so, the resolution of the
vertical structures is perfectly acceptable when correlated to the scale of the flow domain. By closely
analysing the time-averaged plots it can be noticed that the mean variables did not reach full
convergence yet, however we consider that the extra effort necessary to achieve that is simply
unjustified, especially if considering that the gain in overall accuracy would be practically null.

A Rankine-type vortex, typical for cyclones - i.e. a forced vortex core, with a diameter roughly
equal to the internal diaphragm diameter, surrounded by a free vortex extending radially towards the
outer cylindrical wall of the combustion chamber — is clearly visible in the first section of the
combustor. Due to the friction with the solid walls, the intensity of the vertical motion is gradually
slowed down in the following sections, although not entirely; at the exit section of the combustion
chamber the tangential component of the flow is still very important. The circumferential circulation is
reduced in the third section and effectively limited to the core region in the fourth section.

The very low static pressure in the vortex core promotes a reversed flow around the combustion
chamber axis over the entire chamber length. Most of the total pressure losses take place between the
inlet boundaries and the exit of the first section of the combustion chamber, this being the effect of the
high near-wall velocities, reaching more than 50 m/s at the reduced inlet section and over the entire
circumference of the chamber.

The flame front is stabilized near the external cylindrical wall of the first section, without touching
it; the unburnt mixture of fuel and air separates the flame front from the chamber wall. This reduces
the actual thermal load of the cylindrical wall, maintaining the wall temperature around 900 K. Much
higher temperatures are observed on the bottom wall and in the next sections, specifically on the
separation diaphragms, locally exceeding 1500 K. The maximum average combustion temperature for
pure methane is about 2190 K, and is almost uniform over the volume of the first section; however, the
burnt gaseous mixture temperature drops quickly in the next sections down to about 1550 K at the
chamber exit. This is caused by the intense radiative heat loss through the chamber external walls.

The two cases with air-excess ratio A = 1.15, one with pure methane and the other with biogas as
fuel, they are quite similar in almost all aspects (Figures 21-23), the most notable differences being the
concentration and distribution of carbon monoxide. Significantly lower values of CO are generated for
biogas combustion, which is mostly due to the presence of a large fraction of CO; in the unburnt
mixture. A slightly higher pressure loss was calculated, implicitly caused by the higher volumetric
flow and mixture velocities at the inlet of the first section of the combustor.

The higher air excess biogas cases (1.2 and 1.25 respectively) are however very different from the
first two cases. The most notable modification is the shifting of the flame front position from the initial
near-wall position at the exterior of the first section to the core vortex boundary. This strongly alters
the velocity distribution in all sections, reducing the velocity drop from first section outlet towards the
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exit of the combustion chamber. The maximum temperature is now located in the core, and the
temperature gradient along the axis is lower. Evidently, the solid walls temperature is also
significantly changed, with almost the entire surface of the first section external walls barely heated,
the average temperature being less than 600 K. Only one spot at the back of the chamber is visibly
hotter, above 1000 K. The maximum wall temperature is still located in the second section, but the
second diaphragm wall is significantly more thermally loaded than the first wall. The outlet
concentration of CO is higher at A = 1.2 than at A = 1.15, but lowers again with increasing air excess.
Most of the CO is now concentrated in the second section of the combustor.

The most striking difference is the massively increased pressure loss. This is most certainly the
effect of the flame front repositioning, although the actual mechanism of its action is not yet clear. The
increase in volumetric flow cannot explain this all by itself, the pressure loss effectively doubles, but
the flow only increases by approx. 4% and 8% respectively.

2500 ® Methane, A=1.15 H Biogas, A=1.15 7000

Biogas, A=1.20 H Biogas, A=1.25 6000 .
2000 = Methane, A=1.15 ™ Biogas, A=1.15
Biogas, A=1.20 = Biogas, A=1.25
5000
1500 4000
1000 3000
2000
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1000
0 =l
Ma; 0
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Figure 21. Temperature data for all cases [K]. Figure 22. Static pressure data for all cases [Pa].
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Figure 23. CO mass fraction data for all cases [Pa].

6. Conclusions

A Rankine-type vortex is generated in the first section of the combustor. The flame front is stabilized
near the cylindrical wall of the first section, without touching it because the unburnt mixture of fuel
and air separates the flame front from the chamber wall. This leads to a reduced thermal load of the
cylindrical wall. The two cases with air-excess ratio A = 1.15, one with pure methane and the other
with biogas, they are quite similar in almost all aspects except the concentration and distribution of
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CO. Significantly lower values of CO are generated for biogas combustion, which is mostly due to the
presence of a large fraction of CO; in the unburnt mixture. The biogas combustion with higher air
excess (1.2 and 1.25 respectively) is very different from the combustion of methane or biogas with
lower air excess. The most evident difference is the movement of the flame front position from the
initial near-wall position at the exterior of the first section to the core vortex boundary. This strongly
alters the velocity distribution in all sections and temperature gradient. The solid walls temperature is
also significantly changed, with almost the entire surface of the first section external walls barely
heated and only one spot at the back of the chamber with higher temperature. The maximum wall
temperature is still located in the second section, but the second diaphragm wall is significantly more
thermally loaded than the first wall. The CO concentration is higher at A = 1.2 than at A = 1.15 and the
highest concentration is found in the second section of the combustor. The biggest difference is the
massively increased pressure loss. This is most certainly the effect of the flame front repositioning,
although the actual mechanism of its action is not yet clear.
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