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Abstract. In the presented paper, a research program for new vision of nanoengineering has been 

suggested. In the framework of this program, growth of a solid state surface under the influence 

of external source of sputtering particles is considered as the problem of optimal control by 

distributed parameter system, the source being a control. As one of cornerstones in this approach, 

general theory of the one-dimensional KPZ-equation in approximation of small angles under the 

action of the spatially-inhomogeneous source has been developed. The complete mathematical 

model of this process with the Dirac delta function source of external particles illustrates this 

theory, Green’s function for this system having been calculated exactly. Scheme of physical 

realization of delta-functional source by means of series of carbon nanotubes has been discussed. 

Opportunity of combined characterization of solid state surface by both atomic force microscopy 

and scattering data for electromagnetic waves has been demonstrated. The height of the sample 

has been constructed with help of the Cole-Hopf substitution from single eigenfunction of 

discrete spectrum being an example of the surface shape under investigation. 

1.  Introduction 

From 1981 to 2018, scientific community all over the world has been witnessing intensive development 

of scanning probe microscopy [1]. Nowadays, various modes of scanning probe microscopy have 

covered different spheres of contemporary material science – from the use of magnetic force microscopy 

for the research of epitaxial ferro- and antiferromagnetic structures [2] to the application of atomic force 

microscopy for the study of chitosan’s and chitosan-based copolymers’ mechanical properties [3]. In 

particular, the increase of precision for measurements using atomic force microscopy proves to give us 

an opportunity of verification of different models for growth of solid state surfaces [4]. 

At present, the most popular model of such kind is the Kardar-Parisi-Zhang equation (KPZ) [5]: 

 ),()(1 22 txUHHc
t

H 





  (1) 

This phenomenological equation describes temporal evolution of the height ),( txH


 of solid state 

surface under sputtering of a substance on it, ),( 21 xxx 


 being two-dimensional vector and   being 

two-dimensional gradient. The first term on the right-hand side of the KPZ-equation demonstrates that 
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it, rate c of this growth being constant. The second term on the right-hand side of the equation (1) 

corresponds to the surface diffusion of sputtering substance,   being a diffusion coefficient. Moreover, 

this term regularizes the input equation preventing a gradient catastrophe, which might be generated by 

the presence of the first term only. The third term ),( txU


 is the external source of sputtering particles. 

It is obvious that at arbitrary moment of time 0t  this function ought to be nonnegative everywhere: 

0),( txU


. As a rule, the Cauchy problem for the equation (1) is studied: 

 )()0,( 0 xhxH


 ,      2RDx 


, (2) 

initial condition being corresponded to initial shape of the surface under consideration. 

For instance, the KPZ-equation proves to be highly adequate to the physical experiment during the 

simulation of manufacturing process of multilayer mirrors and gratings employed in X-ray optics [6]; 

therefore, verification procedure for model (1) of the surface growth with support of this one by means 

of atomic force microscopy is not required. The situation gives rise to the problem of uncertainty under 

choice of direction of further epistemological movement. Nevertheless, there is the way to overcome 

this obstacle by considering the external source of particles ),( txU


 as a control. At last, in this case the 

equation (1) ought to be added by demand of minimization of some functional of height ),( txH


 and 

control ),( txU


: 

 min)),(),,((],[

0

2    dtxdtxUtxHfUHF

T

D


 (3) 

Conditions (1)-(3) form the problem of optimal control by distributed parameter system [6]. Namely, 

starting from the initial shape )(0 xh


 by means of control ),( txU


 it is required to achieve minimum of 

functional (3) on the fixed interval of time ],0[ T . For example, one can set up the problem of the closest 

fitting of fixed shape )(xH


  by height ),( TxH


 at the moment of time Tt   in )(2 DL -metric: 

 min)](),([ 22   xdxHTxH
D


 (4) 

We stress that on the interval [0,T] of time function ),( txH


 must obey to the equation (1). In other 

words, it is the problem of nanoengineering. 

The first obvious solution of this problem is to apply the infinite-dimensional generalization of 

Pontryagin's maximum principle [8]. In order to reduce the KPZ-equation to infinite-dimensional 

dynamical system in the space l2 of square-summable sequences of complex numbers, let us expand 

functions ),( txH


 and ),( txU


 on an orthonormal basis 


 n

nn x 0)}({


 in separable Hilbert space L2(D): 
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 (5) 

denumerable sets of Fourier coefficients hn(t) and un(t) representing dynamical variables in l2 and 

controls therein, respectively. But the substitution of the first Fourier-series expansion from (5) into the 

equation (1) ends in failure, because the strong nonlinearity of this equation does not allow obtaining 

any visible result. This circumstance demonstrates that to do the step forward, one must simplify the 

KPZ-equation in the framework of the conjecture about correctness of the inequality |H|<<1 using the 

so-called approximation of small angles [5]. The result of this simplification is equal to: 

 ),()(
2

22 txUHH
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c
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
  (6) 
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Further, let us introduce a new unknown function ),( tx


  as follows: 

 ),(ln
2

),( tx
c

v
tctxH
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
  (7) 

The expression (7) is known to be the Cole-Hopf substitution [5]. By means of this formula, one can 

reduce the nonlinear equation (6) to the Cauchy problem for the next one: 
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 (8) 

The linear parabolic equation (8) is simpler than the nonlinear equation (6). 

For the functional (4) it is interesting to consider two-stage control: 
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 (9) 

where positive value T  being fixed. 

The formula (9) describes the situation of free evolution of the system (6) under Tt  . If Tt  , then 

the second term on the right-hand side of the equation (8) disappears and this equation is transformed 

into a trivial two-dimensional diffusion equation: 

 
 2




t
 (10) 

Let us assume that on the interval of time [0,T] there is a control ),( txQ


 , under which global 

minimum of the functional (4) would be achieved that is )(),( xHTxH


  
almost everywhere in the 

region D . Hence, further evolution of height can be described by means of Green’s function of the 

equation (10) [9] and the Cole-Hopf substitution (7): 
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For example, if the fixed shape )(xH


  is equal to: 
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then under Tt   the formula (11) gives us [10]: 
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 (13) 

where 10 0 m  ,  )4exp()( 22

0 atmtm    and a  is the lattice constant. 

The explicit solution (13) may be interpreted as surface of crystal with cubic symmetry growing in 

the direction of one of the primitive translation vectors. At each moment of time Tt  , this function is 

homothetic to the initial condition (12) for it. Graph of function (12) is presented in Figure 1. 

It is well known that besides Pontryagin’s maximum principle [8], there exist quite a few alternative 

approaches to solving problems of optimal control by distributed parameter systems ([7, 11-13] and 

references therein). On the other hand, to solve the problem defined by conditions (2), (4), (6), and (9) 

under ],0[ Tt , it is necessary to study a number of model situations in order to find the most 

convenient phase space for this problem. That is why in accordance with the classical sample [8] let us 

restrict area of our research by the next simplifications. Namely, we shall consider only surfaces with 

cylindrical generatrix (Fig. 2) and stationary controls depending on longitudinal coordinate only. 
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Figure 1. An example of the initial shape of the surface with convenient 

expression for its free evolution. 

 

Figure 2. An example of a surface with a cylindrical generatrix. 

The rest of the article is organized as follows: in Section 2 we demonstrate, how to construct a general 

solution of the one-dimensional KPZ-equation in approximation of small angles under the action of the 

spatially-inhomogeneous source Q(x), which vanishes on infinity: 0)(lim 


xQ
x

. Section 3 deals with 

the case, when the source profile is proportional to the Dirac delta function: )(
4

)(
2

x
c

q
xQ 





 . In 

section 4 we consider both the simplest solution of the KPZ-equation with the delta-functional source 

and the approach to measurement of surface diffusion coefficient   along conducting surfaces by means 

of electromagnetic waves scattering. Final section is devoted to the discussion of results elaborated and 

perspectives of further investigations. 

2.  General theory of one-dimensional KPZ-equation with a spatially-inhomogeneous source 

The aim of this section is to compare a number of methods to find the exact solution of the one-

dimensional KPZ-equation in approximation of small angles with a time-independent external source 

Q(x). In this case, the Cauchy problem for equation (6) is reduced to: 
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The Cole-Hopf substitution (7) transforms the equation (14) to the next one: 
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This linear second-order parabolic partial differential equation might be solved in the framework of 

the newest technique developed in Ref. [14]. Exact solution of Eq. (15) can be expressed as follows: 
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(17) 

is the so-called space shift operator [14]. However, application of Eq. (16) under Q(x) ≠ 0 is very hard, 

because calculation of sequential degrees of the operator (17) under increase of exponent n  in Eq. (16) 

becomes more awkward. On the other side, the exact solution of equation (15) can be represented as: 

 




  dtxGtx )0,();,(),(  (18) 

where );,( txG   
is Green’s function of this equation, which can be found by means of the Feynman-

Kac formula [15, 16]: 
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Path integral (19) is calculated on functional space C(t, x – ) of continuous on interval [0,] functions 

() obeying to the boundary conditions: (0) = 0 and (t) = x – . The symbol dW(t, x – ) designates 

the so-called conditional Wiener measure [15, 16]. But calculation of Green’s function according to the 

Eq. (19) is quite difficult too; that is why let us find the solution of the linear Eq. (15) in the form: 

 )()exp(),( xttx    (20) 

It is easy to check that a new unknown function )(x  obeys to the stationary Schrödinger equation: 

  ̂  (21) 

with the Hamiltonian 
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d
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where the role of potential energy is played by the function )(
2

)(
2

xQ
c

xW 





. Due to nonnegativity 

and vanishing on infinity of the source Q(x), the Hamiltonian (22) possesses both the discrete spectrum 

of negative eigenvalues n  ( 1,0  Nn ) and the continuous spectrum of positive eigenvalues  [17]. 

Green’s function );,( txG   as a kernel of operator of evolution )ˆexp(  t  for (15) is equal to: 

  dxtxttxG nn
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Figure 3. Initial shape (from below) and constant fixed shape (from above). 

In the formula (23), N eigenfunctions of discrete spectrum )(xn  and eigenfunctions ),(  x  of 

continuous spectrum ought to be normalized according to standard rules of quantum mechanics [17]: 

 nmmn dxxx  




 )()( , 0),()( 




 dxxxn  , )(),(),(  




 dxxx (24) 

Moreover, integrals (24) mean that the phase space L2(R) of the system (15) is decomposed into 

direct sum of subspace Vd with basis from eigenfunctions of the discrete spectrum and subspace Vc

 
with 

basis from eigenfunctions of  the continuous spectrum:
 

сd VVRL )(2 . 

Having found Green’s function from the expression (23), we can return to investigation of the height 

H(x,t) using formulae (18) and (7). In the case under consideration, the functional (4) is reduced to: 

 min)](),([ 2 




 dxxHTxH , (25) 

and as a fixed shape one can choose the function сonsthxH T  )(  corresponding to uniformly flat 

surface. This situation is presented in Figure 3. 

If on the interval of time [0,T] there is a control under which global minimum of the functional (25) 

would be achieved that is H(x,T) = hT almost everywhere on R  
then under t > T evolution of the system 

(14) with the source 0)( xQ  obeys to the next very simple expression: 

 )(),( TtchtxH T   (26) 

The formula (26) claims that under t > T there is no roughness on the surface under investigation. 

3.  Surface with cylindrical generatrix under the action of the Dirac delta function source of 

sputtering particles 

It this section, general theory developed in the previous section is applied to the source proportional to 

the Dirac delta function: )(
4

)(
2

x
c

q
xQ 





 . In geometry with cylindrical generatrix this source can 

be physically realized by means of the channelling of slow atomic particles along the series of carbon 

nanotubes [18] situated on the straight line x = 0. This configuration is illustrated by Figure 4. 

Thus, in this case Eq. (15) is equal to: 

 









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


)(2

2

2

xq
xt

 (27) 

and the stationary Schrödinger equation (21) transforms to the following: 
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2

xq
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This equation is known to describe the quantum mechanical problem about the delta-functional well 

[19]. In accordance with [19] under 0x  the equation (28) is reduced to the following one: 

 



2

2

dx

d
 (29) 

which ought to be added by boundary conditions at x = 0 [19]: 

 )0()00()00(    ,     0)0(2)00()00(  


q
dx

d

dx

d
 (30) 

It is easy to obtain from Eqs. (29) and (30) that in this system there is the unique state of the discrete 

spectrum: 

 |)|exp()(0 xqqx   (31) 

corresponding to eigenvalue 2
0 q  [19]. Graphs of potential well )(2)( xqxW   and the 

normed ground state (31) in dimensionless coordinate are presented in Figure 5. 

But our further construction sharply differs from this one in Ref. [19] because we take into 

consideration the next projection operator ̂
 
acting on arbitrary wave function (x) as follows: 

 )()(ˆ xx   . (32) 

     

Figure 4. Series of carbon nanotubes as realization of delta-functional source. 

 

 

 

 

 

 

Figure 5. The delta potential well (on the left) and the ground state (on the right). 
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The Hermitian operator (32) is the well-known parity operator with eigenvalues P = ±1 [17, 19]. 

The Hamiltonian of the problem )(2ˆ
2

2

xq
dx

d
  commutes with the parity operator: 

0]ˆ,ˆ[  . Hence, for both of them there are common eigenfunctions [17, 19]:   kk k  2ˆ  and 
  kk ˆ . Using Eqs. (29) and (30), one can establish that: 

 
22

|)|sin()cos(1
)(

qk

xkqxkk
xk







  ,       )sin(

1
)( xkxk 


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Both of eigenfunctions (33) are normed on the Dirac delta function on k: 

 )()()( kkdxxx kk
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
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and correspond to the same eigenvalue 2k . Graphs of functions (33) in dimensionless coordinate 

under k = q are presented in Figure 6. Application of the general formula (23) for the delta potential 

well gives us the following expression for Green’s function of the equation (27): 

dkxxktxqttxG kkkk  
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2 )]()()()([)exp()()()exp();,(   (35) 

It is easy to check that for functions (31) and (33) the next relation is true: 

 )()]()()()([)()(

0

00   


 xdkxxx kkkk  (36) 

Therefore, Green’s function (35) obeys to the standard initial condition: G(x,;0) = (x – ). 
The result of calculation of Green’s function in accordance with Eq. (35) is equal to: 

 )];,();,();,([)exp(
4

)(
exp

2

1
);,( 321

2
2

txGtxGtxGqt
t

x

t
txG 






 















 (37) 

where 

 |)|||exp();,(1   qxqqtxG  (38) 

 )],(),(),(),([
4

);,(2 txgtxgtxgtxg
q

txG 


 


  (39) 

 )]|,|||(3)|,||(|)|,||(|)|,||(|[
4

);,(3 txgtxgtxgtxg
q

txG 


 


  (40) 

Functions (39)-(40) express via the next auxiliary function connected with the complementary error 

integral: 

 










 tq

t
erfcqtg 






2
)exp(),(  (41) 

Moreover, functions (38)-(40) are invariant under the action of the abelian point group C4 on the 

plane ),( x . 

Typical graph of Green’s function (37) under fixed time t  is presented in Figure 7. 
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Figure 6. Eigenstates of continuous spectrum for the delta potential well corresponding to 

different eigenvalues of the parity operator: P = +1 from above and P = -1 from below. 

 
Figure 7. Green’s function of linear parabolic equation with Dirac delta function source. 

4.  Wedge shape and measurement of surface diffusion coefficient 

This section is devoted to analysis of the simplest solution of the KPZ-equation with delta-functional 

source and a corollary from it, which is important for physical experiment. 

The identity (36) is known to claim that functions (31) and (33) form complete system in the 

Lebesgue space )(2 RL . Further, this fact in common with formulae (34) and the expressions: 

 0)()( 







 dxxx kk   ,   0)()( 0 




 dxxxk   (42) 

It means that the phase space L2(R) of the infinite-dimensional system (27) can be expanded into the 

following direct sum:
 

cc VVVRL   0
2 )( , where )(2

0 RLV   is its subspace constructed from the 

single function (31) of the discrete spectrum of ‘energy’   and 
cV  

are linear subspaces of L2(R) 

corresponding to the continuous spectrum of this one. Bases of these subspaces 
cV  

and 
cV  

consist from 

functions )(xk


 

and )(xk
 , respectively. 

It is quite hard to deal with eigenfunctions of continuous spectrum, that is why we shall consider the 

one-dimensional subspace V0 only. In this case, initial condition for the equation (27) is equal to: 

 )()0,( 00 xcx      ( 00 c ) (43)
 



10

1234567890‘’“”

Scanning Probe Microscopy 2018  IOP Publishing

IOP Conf. Series: Materials Science and Engineering 443 (2018) 012027 doi:10.1088/1757-899X/443/1/012027

 

 

 

 

 

 

 

Figure 8. Temporal evolution of wedge corresponding to the single state of discrete spectrum: 

initial shape (from below), shape at t = T (in the middle) and shape under t > T (from above). 

and the general solution of the equation (27) can be extracted from the formula (20): 

 )exp()(),( 2
00 tqxctx    (44) 

Applying the Cole-Hopf substitution (7) in opposite direction from (44) we find that: 

 )(
2

),( 0

22

xht
c

q
ctxH 












 



, (45) 

where dependence 

 ||
2

)ln()( 00 x
c

q
qcxh 





 (46) 

is the initial shape of the surface corresponding to initial condition (43) for the auxiliary function (44). 

Using formulae (45)-(46) it is easy to check that 
c

q

x

txH 










2),(
tan . Hence, for validity of 

small angles approximation for the KPZ-equation (14) intensity of the Dirac delta function must satisfy 

to the next inequality: cq  . Thus, in this case initial profile (46) is the wedge with the angle near 

its edge close to  . And according to the expression (45), temporal evolution of the initial condition 

(46) reduces to the motion of the wedge in vertical direction with constant velocity 
c

q
cV

222 



. 

This situation is presented in Figure 8. 

If under Tt   source of external particles is switched off ( 0)( xQ ), then the shape of the surface 

is the following: 

 ||
2

),( x
c

q
hTxH T 





. (47) 

For further considerations it is convenient to assume that 0Th . One can achieve it by choosing  

























 


2

22

0

2
1exp

1

c

q
Tc

q
c



 
in the expression (43). In this case, the one-dimensional variant 

of Eq. (11) gives us the next law of growth of the surface under Tt  : 

 






 











 


2

),(),(
ln

22
1)(),(

2

22 TtxgTtxg

cc

q
TtctxH


 (48) 

where g(x,t) is the auxiliary function (41). Graph of the function (48) under the fixed time t is presented 

in Figure 8. One can observe that under t > T smoothing of edge of the wedge takes place. If sputtering 

substance is ideal conductor (at t = T), there is a possibility to measure coefficient of surface diffusion v 

(it is supposed that values c and q are known from other measurements). 
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Let us consider linearly polarized simple harmonic incident electromagnetic wave with complex 

amplitude )]cos(exp[ 0  rkiA , r and  being polar coordinates in plane xz  and 2k
 

being wave vector of the wave expressed via its wavelength  . This wave falls on the wedge (47) from 

the direction )sin,0,cos( 00   and gives rise to the wave of horizontal polarization: 

 )0),,(,0( rEEH 


 (49) 

with the complex amplitude: 

 )]2,(),([),( 00   rkurkuArE  (50) 

and to the wave of vertical polarization: 

 





















r

rH

ki

rH

rki
EV

),(1
,0,

),(1 




 , (51) 

with the complex amplitude of magnetic field: 

 )]2,(),([),( 00   rkurkuArH . (52) 

expressing via the following auxiliary function (see Ref. [20] and references therein): 

 






 








 



 







0

0 cos)(
2

exp
2

)(2
),(

l

l

l
J

liJ
u

















  (53) 

In the formula (53)   2  is the angle of the wedge and )(J  is Bessel function. 

Further, one can both measure and calculate using expressions (49)-(53) the specific cross section of 

this wave: 

 r
A

E

d

d


2

2||





 (54) 

After that, one can extract the value of the angle of the wedge and, therefore, the value of surface 

diffusion coefficient v from comparison of experimental and theoretical data. 

We underline that in expression (54) the electric field strength E


 
ought to contain reflected wave 

only. It is obvious that at t = T series of carbon nanotubes from Figure 4 must be removed from zone of 

experiment. To simplify formulae (49)-(53), it is suitable to apply both the Sommerfeld ray asymptotics 

and the Pauli ones [20]. 

5.  Conclusion 

In this work, the newest research program has been claimed; namely, we have proposed the point of 

view on nanoengineering as the problem of optimal control by distributed parameter system. We have 

illustrated this vision by the KPZ-equation (1) describing the growth of a solid state surface, external 

source of sputtering particles being a control. 

We have carried out a number of preliminary investigations in the framework of the suggested 

research program. In particular, we have constructed the exact solution for the Cauchy problem (14) for 

the one-dimensional KPZ-equation in approximation of small angles with the source 

)(
4

)(
2

x
c

q
xQ 







 
of external particles: 

 





























 









 d

hc
txG

c

v
tctxH

2

)(
exp);,(ln

2
),( 0  (55) 

where G(x,;t) Green’s function (37)-(41). 

Success in obtaining of the result (55) gives us a confidence that by methods of quantum mechanics 

[17, 19] we shall construct the exact solution of the Cauchy problem (14) with the following source: 
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 








1

0

2

)(
4

)(
N

n

n bnxq
c

xQ 


. (56) 

Function (56) can be physically realized by means of the passing of slow atomic particles through 

the ‘comb’ with step b of N series of carbon nanotubes presented in Figure 4. We underline that 

intensities qn of flows of such particles can be different in different series. Also we stress that carbon 

nanotubes start to decay at temperature about 1500 K [18]; therefore, these nanostructures can be applied 

under different kinds of epitaxial procedures. 

The suggested in previous section method of surface diffusion coefficient determination is highly 

realistic, because in work [21] the possibility of the channelling of atomic particles with different masses 

– from He to Xe – and with energies less than 0.5 keV is theoretically established, metals being among 

these particles. Moreover, usage of electromagnetic waves scattering data is very fruitful idea, because 

atomic force microscopy usually presents the shape of the surface under investigation at the beginning 

and at the end of epitaxial process [4]. But for values like (54) real time measurement can be organized. 

This information about states of the observed system’s motion may be very important especially for 

reconstruction of unknown source [7]. 

It is necessary to emphasize that a wide range of nanotechnological problems can be solved as 

problems of optimal control by distributed parameter system. For instance, in paper [22] it has been 

demonstrated that for a multilayer Ge/Si(001) heterostructure with vertically aligned Ge nanoclusters 

the nonuniform spatial elastic strain distribution gives rise to a three-dimensional potential well for 

electrons in the strained Si layers surrounding Ge quantum dots. In this situation, elastic strain 

distribution ought to be considered as a control. And the depth of the potential well ought to be 

considered as a functional, its maximization resulting in maximization of efficiency of the radiative 

recombination for the nanostructure [22]. Another example concerns magnetic field controlled domain 

wall nucleation, pinning and depinning effects in ferromagnetic nanowires [23]. Great attention is paid 

to these effects to realize magnetic logical cells, which are able to perform main logical operations [23]. 

On the other hand, scanning probe microscopy gives an opportunity both to create and to investigate 

nanostructures of different types for various applications [24-26], because nowadays the same device 

can work as scanning probe lithographer, as atomic force microscope, as magnetic force microscope, 

and so forth [24-26]. 

At last, let us remind that Eigler and Schweizer were the first to use a scanning tunneling microscope 

tip to arrange 35 individual xenon atoms on a single-crystal nickel surface, famously spelling out the 

letters ‘IBM’ [27]. Thus, nanoengineering and scanning probe microscopy have been closely relating 

since invention of the second one. And at present, powerful development of functional analysis and 

computer science is setting the qualitatively new level of this interrelation. 
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