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Abstract. ZrN, Zr-O-N, and Zr-Si-N wear resistant coatings were formed using vacuum-arc 

plasma fluxes deposition at the substrate bias voltage 100 V on HS6-5-2 steel substrates. For 

comparison, a sample of ZrN coating at the same substrate bias voltage on the same substrate 

was obtained using magnetron sputtering. The structural and mechanical properties were 

characterized using X-ray diffraction, atomic force microscopy, and nanoindentation. The 

influence of O and Si additives on the surface morphology of coating were investigated. 

1.  Introduction 

One of the ways to improve the mechanical and tribological properties of machine parts is surface 

modification by a hard coating formation [1-4]. The transition metal nitrides coatings are widely applied 

for cutting tools and tribological surfaces [5,6]. The properties of two-component coatings can be 

improved by adding the third element or even more of them to the two-element system. ZrN coatings 

occupy a special place among the transition metal nitrides [7,8] and have a favorable combination of 

mechanical properties under conditions requiring high thermal stability. 

The work is aimed at the study of the effect of Si and O addition on the surface morphology and such 

structure characteristics of ZrN coatings like lattice parameter, grain size on the surface, and roughness 

in microscale, at the same substrate bias voltage. 

2.  Experimental details 

ZrN, Zr-O-N, and Zr-Si-N coatings were synthesized using cathodic arc evaporation (CAE) on  

HS6-5-2 steel substrates in a “Bulat-3T” system. The coatings were deposited at nitrogen pressure of 

2 Pa. The deposition was performed at substrate bias voltage of -100 V. Zr-O-N coatings were deposited 

with relative oxygen concentration O2(x) = O2/(O2+N2) amounted to 10%. A substrate temperature was 

450°C for ZrN and Zr-Si-N and 350°C for Zr-O-N. The deposition time was 30 min and thickness of 

the coatings was about 3 μm. 

X-ray diffraction (DRON-3 M, Cu-Kα) was used to characterize the phase composition of the 

coatings. Lattice parameter and the average size of the crystallites of the ZrN phase were calculated 

according to (111) plane of the obtained diffraction patterns. 
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Table 1. The properties of ZrN, Zr-O-N, and Zr-Si-N coatings, investigated in this work: lattice 

parameter, crystallite size, Ra, size of grains on the surface, E, and H. 

Number 

of 

samples 

Content of 

samples 

Ra, nm 

2x2 µm2 

Lattice 

parameter, 

nm 

Crystallite 

size, nm 

Size of 

grains on the 

surface, nm 

E, GPa H, GPa 

1 
ZrN 

(CAE) 
6.2±0.3 0.4595* 18±0.2 700 282±14 29±2 

2 Zr-Si-N 5.2±0.3 0.4614 6±0.1 583 298±15 22±1 

4 Zr-O-N 3.2±0.2 0.4615 15±0.2 300 312±16 31±2 

5 
ZrN 

(magnetron) 
2.7±0.1 0.4608 11±0.1 100 307±15 29±2 

*According to PDF No 35-0753 for ZrN (ASTM), a = 0.4577 nm 

Hardness and elastic modulus were determined using nanoindentation. Hysitron Ti 750 Ubi (USA) 

equipped with the Bercovich diamond indenter with tip radius of 150 nm was used. The standard fused 

quartz sample was used to control the calibration correctness of the device. The measurements were 

performed at the load of 10 mN. 

The surface morphology of the coatings was investigated using atomic force microscopy (AFM) 

device HT-206 (produced by MTM Belarus) in the contact mode. AFM is the technique to 

simultaneously study different surface phenomena, like roughness of initial surfaces [9] or surfaces after 

mechanical [10,11] or chemical treatment [12,13], friction testing [14], and phase distribution [15]. The 

surface topography was studied using standard CSC38 silicon probe of beam type with the radius of tip 

curvature less than 10 nm and stiffness of cantilever of 0.08 N/m produced by “Mikromasch” (Estonia). 

The roughness of the surface in microscale was investigated in the area of 2×2 μm2. 

The samples under study are listed in Table 1. 

3.  Results and discussion 

According to the X-ray analysis, the addition of alloying elements to ZrN coating in small amounts 

(6 at.% Si or 10 % O in the working gas mixture) does not lead to formation of silicon containing or 

oxygen containing  phases; the diffraction lines are shifted to lower angles from their positions. 

The introduction of small amounts of additives into the ZrN lattice increases the lattice parameter to 

0.4614 for Si atoms and to 0.4615 for O atoms. The introduction of additive atoms reduces the crystallite 

size in Zr-Si-N and Zr-O-N coatings. The average size of the crystallites in ZrN calculated for (111) 

plane is about 18.3 nm (Table 1). Silicon introduction into ZrN coating deposited at the same substrate 

bias voltage of − 100 V results in a significant reduction in size of the crystallites to about 6.4 nm. 

Oxygen introduction into ZrN coating leads to reduction in size of the crystallites from 18 nm to about 

15 nm. In the work [16], it was found that oxygen in ZrN coatings obtained by magnetron sputtering led 

to the crystallite size decrease. Similar values of crystallite sizes in magnetron sputtered coatings ranging 

from 10 to 12 nm were calculated for argon and nitrogen mixture during deposition. In this work, ZrN 

coatings deposited by magnetron sputtering at the same bias voltage (UB = −100 V) show a higher 

lattice parameter than ZrN coatings deposited by CAE equal to 0.4608. The average size of crystallites 

in the magnetron sputtered ZrN was about 11 nm (Table 1). That value was twice lower than in Ref. 

[17], where the average size of crystallites was about 22 nm and decreased to 2.5 nm for about 10 at.% 

of silicon. 

The same values of hardness and elastic modulus of obtained coatings show that energetic levels 

(energy of ion bombardment) of different processes in this work were close to each other (Table 1). It 

is known that mechanical properties of the coatings deposited using CAE are better compared using 
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magnetron sputtering [8]. Such coatings also show the higher density. But in this research, H and E 

values in ZrN coatings obtained by CAE and magnetron sputtering are almost the same. The surface 

microstructure is one of the most important parameters of the wear resistant coatings. 

ZrN, Zr-O-N, and Zr-Si-N coatings in the range of areas from 100x100 m2 till 10х10 m2 show 

classical surface microstructure characteristic for coatings deposited using PVD methods. The numerous 

craters and macroparticles are apparent on the coating surface (Fig. 1a). Microparticles in ZrN coating 

structure have two forms – circular and elongated. The difference in the shape is probably connected 

with the different phase content of the particles. The circular particles consist of the plates and have 

obvious boundary between the particle and the surface. Some particles in the form of separate plates are 

spread over the surface. The elongated microparticles represent a sort of thickened boundary of cells 

embedded in the surface. During study of nitride and oxinitride coatings microstructure, both structured 

features («smooth surface» and macroparticles) should be taken into account. Microparticles participate 

in the formation of the altered secondary structure, which appears in the friction contact under the action 

of the load and participates in the friction process. Microparticles in Zr-O-N coating deposited at O2(x) 

= 10 % look like separate plates grouped together around the joint centre or around the elongated feature. 

There are particles looking like monolithic features. Using lateral forces AFM mode, it is possible to 

compare the microstructure of the smooth surface and the microplate position in the microparticle. So, 

according to the investigated microstructure, microparticles appear on the surface as a result of 

crystallization process of each plate, but not as a result of accidental hitting of microdrops and their 

solidification. 

«Smooth surface» of ZrN coating obtained by AFM is interpreted as a multi-cell structure, in which 

elevated vertical grain boundaries are visible (Fig. 1b). The average size of cells is 700 nm. The coating 

microstructure of Zr-Si-N deposited at UB = − 100 V shows also the form of concave cells (Fig. 1c). 

The addition of Si into coating during deposition reduces the average size of cells from 700 to 583 nm. 

The roughness of smooth surface Zr-Si-N decreases from 6.2 to 5.2 nm for ZrN coating. 

The addition of oxygen instead of Si reverses the microstructure of the surface (Fig. 2a). Cells are 

not visible. Rounded "large" crystallites with diameter of 300 nm appear. Rounding of faces and grain 

coarsening take place in comparison with ZrN. The surface looks like the ledges covered with a layer of 

film and are smooth because of this. Ra is 2.3 nm; there are no "elongated" forms. The lateral forces 

map reveals a significant difference between the round grains from the rest of the surface (Fig. 2b). 

Thus, the distribution over the surface of the oxide phases can be detected. 

ZrN coating obtained by magnetron sputtering has surface microstructure, which is drastically 

different from ZrN coating obtained by CAE (Figs. 1b, 2c). It consists from the separate grains with 

diameter about 100 nm. The surface turns out to be more "friable", which agrees well with the results of 

work [17]. 

   

 (a) (b) (c) 

Figure 1. The topography of ZrN and Zr-Si-N coatings: (a) ZrN, scanned area 4.9х4.9 µm2; 

(b) ZrN, scanned area 2.6х2.6 µm2; (c) Zr-Si-N, scanned area 2х2 µm2 
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 (a) (b) (c) 

Figure 2. The surface of Zr-O-N and ZrN coatings, obtained by magnetron sputtering:  

(a) Zr-O-N, scanned area 1.3х1.3 µm2; (b) lateral forces map, scanned area 1.3х1.3 µm2;  

(c) magnetron ZrN coatings, scanned area 3.3х3.3 µm2. 

4.  Conclusion 

X-ray did not detect the phases containing silicon and oxygen after doping ZrN coatings with small 

amount of additives (6 at.% of Si or 10% of O2(x)). All coatings had similar values of microhardness  

(22-31 GPa) and elastic modulus (282-312 GPa). Coatings with small additions of Si and O showed the 

close parameters of the crystal lattice. 

The presence of the additional elements during the formation of ZrN coating changed the 

morphology of the coating surface. Thus, the initial structure of ZrN coating obtained by the CAE had 

a honeycomb structure with the average cell size of 700 nm. The addition of 6 at% Si reduced the cell 

size to 583 nm. The addition of oxygen changed the cellular structure to a smoothed one with circular 

grains with diameter of 300 nm. The contrast in lateral forces AFM mode allowed us to assume that the 

oxide phases were in Zr-O-N coating. The method of magnetron sputtering at the same bias voltage on 

the substrate formed a less dense grain microstructure of the surface with a grain size of 100 nm. 

Modification of ZrN coatings with the small amounts of Si and O additives allows forming the 

surfaces for tribological application with different types of microstructure and, hence, properties of the 

surface layer in comparison with a pure ZrN coating. 
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