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Abstract. This paper aims to provide a proper set of eco-mechanical indexes to evaluate both 

the mechanical performances and the environmental features of autoclaved aerated concrete 

blocks. To this purpose, a detailed review of existing sustainability indexes − originally 

developed for concrete − is first presented, and subsequently different possible eco-mechanical 

indexes are specifically developed for autoclaved aerated concrete masonry blocks, also in 

order to compare their performances with those of lightweight aggregate concrete blocks. The 

obtained results highlight that, based on currently available information, only few parameters 

appear to be effective in defining the overall sustainability performances of AAC blocks. While 

several researches were indeed carried out in these last years regarding material structural 

properties, there is still a lack of environmental data, which should be necessarily deepened in 

future research work to obtain more reliable results.  
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1.  Introduction 

 

In the present work eco-mechanical indexes are proposed for the sustainability assessment of 

Autoclaved Aerated Concrete (AAC) blocks.  

AAC material was introduced in the construction market since the mid-1920’s, when the 

production process was patented. The material is obtained from a mix of sand, cement, water, gypsum, 

lime, and aluminum powder, which are poured in molds. Chemical reactions between aluminum, 

calcium hydroxide and water cause the production of hydrogen bubbles, which give the characteristic 

porosity of the material. When the material is sufficiently hardened, it is cut in blocks or panels. Their 

subsequent treatment in autoclave at 180 C and 10 bar for 8-10 hours transforms sand and calcium 

hydroxide into calcium silicate hydrate (tobermorite), improving the mechanical properties of the 

material.  

Porosity of AAC causes low compression strength (1-6 MPa) compared to normal-weight 

concretes, but permits to reach low density (about 350-800 kg/m3) and interesting thermal properties 

(in terms of conductivity coefficient ). As an example, AAC blocks with a density approximately 

equal to 400 kg/m3 can reach thermal conductivity values that can be 10-20 times lower than normal-

weight concrete [1]. Therefore, in some countries AAC blocks permit to build external walls (having 

or not a bearing function) without adding an extra-layer of insulation, thus reducing costs and 

environmental impact. Furthermore, contrary to multilayered walls, recycling AAC blocks is quite 
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simple, since site waste and rubble can be broken up, ground into powder and re-used in the 

manufacturing process [2]. For these reasons, AAC is gaining an increasing interest in the construction 

market as a valuable alternative in the manufacturing of products that are at the same time thermally 

attractive and characterized by a good construction efficiency.  

In more details, AAC blocks are nowadays often used for the realization of non-structural walls 

(cladding and infill panels) within concrete frame structures, especially in seismic regions. In fact, the 

low specific weight of the material permits a reduction of seismic masses and, consequently, of 

seismic actions. Usually, this allows to save concrete and reinforcement of the structures with 

economic and environmental benefits. As a consequence, the advantages related to the use of AAC for 

external and partitioning walls should be evaluated considering the whole building, including 

structures. Some proper software tools have been proposed in the literature to the scope [3]. Since 

results depend on the features of the building, and on its geographical position, several representative 

case studies should be analyzed to obtain general conclusions. An analysis of this type could provide 

useful information on the importance of the involved variables, their relationships and weights. 

However, such a type of analysis is not so easy to be performed and is very time consuming. 

AAC blocks are also used for bearing walls in low-to-medium rise masonry buildings in seismic 

and non-seismic areas [4-8]. Because of their low density, the size of the blocks can be large: this 

permits faster masonry work and a reduction of the number of mortar joints, which are usually thin.  

In the present work, the attention is exactly focused on the use of AAC for masonry load bearing 

walls. The paper represents a first attempt in trying to provide a quick practical tool for the evaluation 

of material efficiency (in terms of both structural and environmental performances), also with respect 

to other alternative solutions, like blocks in lightweight aggregate concrete (LWAC), with or without 

integrated insulation. To the purpose, eco-mechanical indexes are introduced (see, e.g. [9] for a 

comprehensive review). This approach, first presented by Damineli et al [10] and subsequently 

modified by Fantilli and Chiaia [11] and Chiaia et al. [12], is commonly adopted for the sustainability 

assessment of concrete elements, through a concurrent combination of green aspects and mechanical 

properties.  

As a first step of an ongoing research carried out by the Authors (focused on the definition of 

structural and environmental performances of AAC blocks), the concept of eco-mechanical index is 

herein extended to the case of AAC, starting from the work by Fantilli and Chiaia [11]. The attention 

is mainly concentrated to the individuation of the most significant variables to be considered, 

especially when indexes are adopted as a preliminary tool to choose the best construction strategy 

among different alternatives, like AAC vs. LWAC blocks.  

2.  Assessment of AAC performances through the definition of ecological and mechanical 

indexes 

 

The assessment of sustainability performances of a given construction solution requires the 

introduction of a new holistic approach, which considers concurrently environmental and mechanical 

requirements. The building industry is currently touched by the ongoing sustainability debate, which is 

particularly vital for concrete structures, as the production of this material is responsible of a high 

energy consumption and causes large emissions of CO2 [13]. An increasing sustainability of building 

structures therefore requires a reduction of the environmental impact associated with raw materials 

production, as well as with building erection, maintenance and operation processes. Moreover, an 

increase of the durability of the structure at its maximum technical performance is also desirable. For 

these reasons, environmental aspects must be considered along with other “classic” design aspects, 

such as strength and ductility requirements.  
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2.1 Eco-mechanical indexes overview 

In case of traditional concrete structures, environmental issues have been recently addressed through 

the definition of proper sustainability indexes (among others, e.g., [10-12, 14-19]). As a generic 

statement, a set of environmental and mechanical indexes should be first evaluated and compared:  

 
impacttalenvironmen

eperformanclifetime
potentiallitysustainabiMaterial = . (1) 

This definition [18] addresses clearly the three basic pillars of sustainability – considering the 

environmental aspects, expressed by the environmental impact, as well as social and economic 

aspects, embodied in the lifetime and performance parameters.  

Broadening the basic pillars of sustainability, the objective of conciliating environmental with 

economic and social demands into the building sector have been chased since the early 2000s by the 

research group of Pons et al [19]. They have been working in this direction in order to define a general 

model for a complete sustainability analysis of concrete structures, named MIVES. MIVES is a Multi-

Criteria Decision Making method able to consider all sustainability aspects, including economic, 

environmental and social ones, and incorporating a value function to homogenize all the indicators and 

consider the degree of satisfaction. Within MIVES framework, a Sustainability Index SI is defined 

according to Equation 2: 

 ( ) ( )==
=

N

i
x,iiiiix PVPVSI

1

 , (2) 

where V(Px) measures the degree of sustainability (value) of the alternative x weighed with respect to 

various criteria Px = (P1,x; P2,x; . . . ; PN,x) considered; αi are the weights of each requirement i, βi are 

the weights of each criteria i and γi are the weights of the different indicators i. These weights are the 

preference, respectively, of these requirements, criteria and indicators. Vi(Pi,x) are the value functions 

used to measure the degree of sustainability of the alternative x with respect to a given criterion i. 

Nevertheless, in the most of the real cases, social and economic aspects related to building 

construction and management are extremely arduous to be evaluated, especially during the preliminary 

design stage or even before, during the developing of the optimum mix-design of the raw materials. 

On the contrary, Equation 1 offers a simple way to assess the advantages and disadvantages of a 

certain material, taking into account its mechanical properties (lifetime performance), as well as its 

potential as a sustainable solution (environmental impact).  

Based on this concept, simplified Eco-Mechanical Indexes (EMIs) were developed in recent years, 

as better discussed in [11]. These indexes were devoted to an easy and quick identification of the most 

virtuous construction solutions, characterized by the lower embodied energy and resource 

consumption, while ensuring adequate structural performances. EMIs were exclusively developed for 

structural concrete, as a tool for improving the mix-design of the material, so as to obtain a good 

balance between mechanical and ecological aspects. In more detail, a generic eco-mechanical index 

can be defined as: 

 
EI

MI
EMI =  (3) 

where MI = Mechanical Index and EI =Ecological Index. 

In the first works on this topic, MI comprised just the compressive strength of concrete, while other 

parameters were neglected. However, according to fib Bulletin 67 [14], concrete properties should be 

combined with structural performances, so including not only concrete strength, but also the results of 

other structural tests on materials. Similarly, EI was initially simply related to CO2 emissions.  

Based on these considerations, Chiaia et al [12, 17] proposed an improvement of Equation 3, by 

introducing also other significant mechanical and ecological parameters in the evaluation of MI and 

EI, and linking them through proper correlation functions g() and f(): 
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The correlation functions could be either a simple product of the different parameters, each one 

multiplied for a proper weighting coefficient, or logarithmic functions, so to take into account that the 

considered parameters could be of different order of magnitude [12]. 

2.2 Evaluation of ecological parameters for the definition of the ecological index EI  

According to fib Bulletin 67 [14], the most crucial aspect in the determination of the ecological index 

EI is to define which environmental parameters should be taken into account to evaluate the 

sustainability of a given structure. So far, scientific investigations have been conducted only for 

structural concrete elements, while there is a lack of information specifically focused on AAC and 

LWAC masonry blocks. 

According to several researchers and code rules [10, 15, 20], the most relevant ecological 

parameters are CO2 footprint, embodied energy and water consumption used to produce concrete, but 

also other available parameters, such as biodiversity, toxic substances, resource depletion, as well as 

raw materials, electricity, safety, total cost and thermal conductivity can be use in the definition of EI. 

Consequently, the proposal of a general evaluation method for concrete blocks (AAC or LWAC) 

should first aim at determining the environmental impact in a standardized manner, using the so-called 

“eco-balance”, as described in the European standards EN ISO:14040: 2006 [21], ISO 14044: 2006 

[22], ISO 21930: 2007 [23]. The impact of every substance released to the environment can be so 

ascribed to one of the different impact categories, which have been internationally accepted. 

Table 1 gives an overview on the most widely used environmental impacts for typical concrete 

blocks. For every country, exact data on a specific concrete block (included AAC and LWAC ones) 

can be derived from the Manufactures, using the Environmental Product Declarations EPD, that 

involves a Life-Cycle Assessment (LCA) for the evaluation of environmental aspects. CO2 footprints 

(GWP), Embodied Energy (TNRE) and water consumption (W) of concrete components could be 

otherwise taken from environmental databases; however, in this work it has been preferred to directly 

derive these data from EPDs of Manufactures.  

Among a very large variety of LCA parameters (see Table 1), it is first necessary to individuate the 

most significant factors to be included in the evaluation of the Environmental Index EI for the 

considered material. Comparative studies have shown that the environmental impacts of AAC 

manufacture are dominated both by the use of thermal energy and the connected emissions, and by 

bonding agent manufacture. Quicklime and cement manufacture are indeed based on energy-intensive 

combustion processes, that are responsible of relevant CO2 emissions. 
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Table 1 Environmental data for assessing AAC ecological performances. 

Parameter Unit  

Global warming potential (kg CO2-Eq.) GWP 

Total non-renewable primary energy (MJ) TNRE 

Cumulative energy demand (renewable) (MJ) TRE 

Acidification potential of land and water (kg SO2-Eq.) AP 

Abiotic depletion potential for fossil resources (MJ) ADP 

Depletion potential of the stratospheric ozone layer (kg CFC11-Eq.) ODP 

Use of secondary materials (kg) RM 

Use of net fresh water resources (m3) W 

Non-hazardous waste disposed  (kg) NHW 

Hazardous waste disposed (kg) HW 

Radioactive waste disposed (kg) RW 

Components for re-use (kg) SM 

 

The Global Warming Potential (GWP) associated to the production of 1 m3 of AAC is indeed 

dominated more than 90% by carbon dioxide emissions, which are mainly originated from the 

manufacturing process and the production of thermal energy from natural gas. More than 2/3 of carbon 

dioxide emissions can be attributed to bonding agent manufacture and this is divided equally between 

quicklime and cement manufacture. Nonetheless, the manufacture of AAC requires less energy than 

other masonry products, thereby reducing the use of fossil fuels and associated emissions of carbon 

dioxide. 

Acidification Potential (AP) from the manufacture of 1 m3 of non-reinforced AAC is dominated up 

to 50% by sulphur dioxide emissions and to 40% by nitric oxides. Around 1/3 of the AP comes from 

the energy provision processes for manufacturing, while the production of quicklime and cement 

bonding agents causes around 40% of the AP. 

Looking at the Embodied Energy, in case of AAC it is more appropriate to refer to Total Non-

Renewable Primary Energy (TNRE). The dominance of the non-renewable energy produced in the 

works and used during the process of manufacturing of AAC blocks is indeed evident in this impact 

category: more than 1/3 of the Total Non-Renewable Primary Energy is directly caused by thermal 

energy requirements. 

Secondary Raw Materials (RM) are not generally used during manufacture, neither secondary 

fuels. Moreover, all production offcuts are fed back into the production circuit; hence, RM parameter 

could not be taken into account for defining ecological index EI for AAC. 

With regards to the use of fresh water (W), about 1/3 of total water amount is used in manufacture 

of AAC and it is mainly imputable to the electricity supply pre-chains. A further 1/3 is attributable to 

quicklime and cement production, and the proportion of direct water requirement for AAC 

manufacture directly in the plant is less than 1%. 

Finally, the overall assessment of the accumulation of wastes, accounting for non-hazardous and 

hazardous ones (including mining waste materials, mineral processing residues, municipal waste and 

the domestic refuse, and commercial waste contained therein), needs to be evaluated. Non-Hazardous 

Waste NHW represents the greatest proportion in AAC production. Mining waste materials 

accumulate mainly in the electricity supply pre-chain from extraction of energy sources and also in the 

bonding agent manufacture pre-chains during raw material and energy source extraction. Radioactive 

waste accumulates exclusively through electricity production in nuclear power plants, therefore it is 

negligible for the considered case.  
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Based on this discussion, it is clear that several ecological LCA parameters reported in Table 1 can 

be neglected for the scope of this work. The most suitable parameters to be considered in the definition 

of eco-mechanical indexes for AAC blocks are only those summarized in Table 2. 

 

Table 2. Environmental properties selected for the definition of EI. 

Selected Parameter for EI Unit  

Global warming potential (kg CO2-Eq.) GWP 

Total non-renewable primary energy (MJ) TNRE 

Acidification potential of land and water (kg SO2-Eq.) AP 

Abiotic depletion potential for fossil resources (MJ) ADP 

Use of net fresh water resources (m3) W 

Non-hazardous waste disposed  (kg) NHW 

Hazardous waste disposed (kg) HW 

 

It should be however noted that the greatest limitation of the data reported in the Environmental 

Product Declarations for AAC and LWAC is that they are obtained considering as system boundary 

for LCA only the life-cycle phases of product manufacture (module A1-A3), while product installation 

(module A4-A5), the use stage (module B) and the disposal (module C) are not considered. This 

constraint is relevant since currently there is a global lack of a Cradle to Gate evaluation both for AAC 

and for LWAC blocks.  

2.3 Evaluation of mechanical parameters for the definition of the mechanical index MI  

Mechanical indexes can be conceived as synthetic parameters representative of the sustainability of 

the investigated material referring to social aspects [24]. Since AAC blocks are often used for the 

realization of load bearing masonry walls both in seismic and non-seismic areas, it is indeed crucial 

that their characteristics are able to secure adequate safety and serviceability (i.e. durability) margins 

to the resulting structure, so ensuring a satisfactory building performance. This means that the 

reduction of environmental impact in the design and production of the blocks should not compromise 

the mechanical performances of the material, and that the final product should be anyway 

characterized by well-defined mechanical properties.  

Generally speaking, for masonry structures the most important mechanical property is the 

compressive strength fc, which should be declared by Producers on the technical sheets of the block. 

To some extent, also the post-peak energy absorption capacity in compression (or, equivalently, the 

fracture energy in compression Gfc) can be a parameter of interest, since it is related to structural 

ductility. This is particularly true when it is necessary to evaluate the performances of new “recipes” 

with respect to more traditional solutions, like for example Fibre-Reinforced Aerated Concrete 

(FRAC) in spite of plain AAC. In this case, the effects related to the addition of short polymeric fibres 

in the admixture can be indeed hardly quantified by only measuring the material strength, since the 

latter is only slightly modified by the presence of fibres, and it also depends on the adopted curing 

procedure, which is different for FRAC and AAC (in the production of FRAC, the autoclaving process 

is substituted by curing at room temperature, to avoid fibre potential damage). The optimization of 

fibre amount in the admixture can be then evaluated by examining the post-peak response, since the 

presence of fibres increases the ductility, by reducing at the same time the crack opening.  

However, the determination of the post-peak energy absorption capacity in compression is not so 

straightforward, since it requires the knowledge of the complete stress-strain relationship in 

compression. Traditional compression tests performed during material production and characterization 

are usually simply aimed at the determination of the pre-peak response of the material, until the 

reaching of the compressive strength fc, and are performed under loading control. On the contrary, the 
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determination of the post-peak branch can be only achieved working under displacement control, and 

also in this case the control of the softening branch can be difficult, especially in case of brittle 

materials like concretes. For this reason, fracture energy in compression Gfc is a parameter that can be 

certainly taken into account during the research and developing stages for tailoring a new mix-design 

of a given product, but that can be hardly used in practice for a quick comparison of alternative 

solutions (like for example AAC and LWAC blocks), since it is not available in the technical sheets of 

the products and cannot be approximately derived from other material properties. 

Even if masonry structures are mainly subjected to compressive stresses, it could be useful to 

introduce also a parameter related to fracture toughness in the definition of the mechanical index MI. 

As highlighted in several research works and design codes (e.g. [25-29]), toughness exerts indeed a 

significant influence on the resistance of AAC against damage during transport and handling, and it 

affects the loadbearing behaviour under accidental or seismic loads. Fracture toughness represents an 

important material property also in presence of static loads, since it governs crack formation and 

propagation, and consequently it is strictly related to durability issues. Cracking of AAC walls is 

indeed a quite common problem, especially in case of building internal partitions, due to floor 

deformability.  

A possible parameter representing fracture toughness, which derives from linear elastic fracture 

mechanics (LEFM), is the fracture energy in tension Gft. This property is obtained experimentally, 

from the area under the complete force-crack mouth opening displacement (CMOD) curve. However, 

in absence of experimental data, Gft can be roughly estimated through empirical expressions, on the 

basis of other material properties. For example, in case of lightweight concretes (like those used for 

the realization of LWAC blocks), Gft can be calculated as a function of the mean value of material 

tensile strength, and depends on the type of sand adopted in the mix [30]. As far as AAC is concerned, 

only limited information is available, since Gft is affected by autoclaving process conditions [31]; 

however, an almost linear relation with density can be adopted as a first approximation (as suggested, 

e.g., in [25, 27, 31, 32]). 

3.  Determination of mechanical and ecological parameters for AAC blocks 

3.1.  Assessment of AAC mechanical parameters  

In this work, mechanical properties of AAC blocks (to be used for the definition of MI) are derived on 

the basis of the results of experimental tests carried out by the Authors on AAC samples with an 

average density  ≈ 550 kg/m3 produced by an Italian Manufacturer (see also [28] for more details 

about the experimental program). 

3.1.1.  Experimental characterization of the behaviour in compression. Material characterization in 

compression is performed on three prismatic AAC specimens with square basis, having an edge length 

of 40 mm and a height of 80 mm, cut from the central part of AAC blocks.  

Compression tests are performed under displacement control, so to get the complete stress-strain 

curve, as reported in Figure 1a. Average deformations are measured over the whole specimen height, 

and over a central 25 mm gauge length through 4 LVDTS placed on specimen corners, as shown in 

Figure 2a. In all cases, failure occurs due to the spreading of diagonal frictional cracks (Figure 2b).  

The most important parameters, which define specimen behaviour in the pre and post-peak stage, 

are the compressive strength fc, the elastic modulus Ec, the plasticity number k (defined as the ratio 

between the elastic modulus Ec and the secant modulus from the origin to the peak stress, Ec1), and the 

fracture energy in compression Gfc. The corresponding values obtained from the tests are summarized 

in Figure 1b. It should be noted that the compressive strength obtained from tests on prisms is about 

10% lower than that reported on technical sheets provided by Manufacturers, since during production 

fc is usually derived from standard cubes cut from AAC blocks, according to UNI EN 772-1 and UNI 

EN 771-4 ([33-34], see also [28]). 
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P1 2.93 1581 1.30 4.67 

P2 2.67 1549 1.17 7.10 

P3 2.69 1700 1.19 4.97 

mean 2.80 1610 1.22 5.58 
 

    (a)      (b) 

Figure 1. (a) Stress-strain curves resulting from compression tests on AAC prisms; (b) results of 

the uniaxial compression tests. 

 

 

 (a)      (b) 

Figure 2. Compression tests on prismatic AAC samples: (a) test setup; (b) failure mode. 

 

3.1.2 Experimental characterization of the behaviour in tension. The flexural tensile strength fct,fl and 

the fracture energy in tension Gft of the material are obtained from three-point bending tests on 3 AAC 

notched beams, having nominal dimensions L x H x b respectively equal to 620 x 251 x 100 mm. In all 

cases, the net span of the beams Ln is kept equal to 540 mm, while the average notch height is 

a = 12.8 mm. These tests are carried out under Crack-Mouth Opening Displacement (CMOD) control 

(with a speed of 1m/min), by using an Instron 8862 universal testing machine. In order to measure 

the midspan deflection , a LVDT is applied on a specific device fixed onto supports (Figure 3a); 

moreover, an ESPI measurement system is used to observe cracking onset and propagation (Figure 3b; 

see also [28] for more details on the followed procedure). 
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(a)                                                                         (b) 

Figure 3. Three-point bending tests on AAC notched beams: (a) detail of the LVDT used for the 

monitoring of midspan deflection; (b) ESPI setup. 

 

Figure 4a reports the load-CMOD curve for the three investigated specimens, while the main 

mechanical properties defining AAC behaviour in tension and obtained from the tests are summarized 

in Figure 4b. According to linear elastic analysis, the flexural strength fct,fl can be deduced as: 

 
22

3

)aH(b

LP
f nu

fl,ct
−

=  (5) 

where Pu is the peak load, Ln is the net span of the beam, b is the specimen width, while (H-a) is the 

distance between the tip of the notch and the top of the cross-section. The same beams without notch 

tested under three-point bending have provided an higher value of the flexural strength, which is in 

average equal to fct,fl = 0.6 MPa [28]. 
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fct,fl 

(MPa) 

Gft 

(N/m) 

BB1 0.42 4.8 

BB2 0.40 4.6 

BB3 0.39 9.3 

mean 0.41 6.2 
 

(a) (b) 

Figure 4. (a) Load-CMOD curves resulting from three-point bending tests on AAC notched beams; 

(b) summary of the main properties defining AAC behavior in tension, as obtained from the tests. 

3.2.  Assessment of AAC ecological parameters  

As concerns the AAC samples with average density  ≈ 550 kg/m3 previously presented, no ecological 

data have been evaluated so far. Thus, the Authors do not have any EPD from the Manufacturer, 

neither environmental impact data to use for comparison with other AAC blocks. A complete Life 
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Cycle Assessment for the AAC blocks already characterized from a mechanical point of view is part 

of an ongoing research carried out by the Authors, and will be ready in the near future.  

Meanwhile, the ecological parameters to be used in the definition of the environmental index EI 

presented in this work have been deduced by referring to data available in the literature and relative to 

comparable typologies of AAC masonry units. In more detail, three different commercial AAC blocks 

(named AAC1, AAC2 and AAC3 in the following) are chosen on the basis of three main criteria, that 

is same block thickness (equal to 300 mm), almost equal compressive strength (fc ≈ 3.4 MPa, as 

determined on cubes – being so comparable to that of blocks analysed in Section 3.1), and similar 

gross density (ranging between 445 ≤  ≤ 600 kg/m3).  

Finally, the selected blocks are characterized by thermal conductivity ranging between  

0.1 ≤   ≤ 0.11 W/(m·K). This last parameter is particularly interesting and makes AAC an eco-

friendly material, since its low value allows to decrease the residential energy consumption and raise 

the energy efficiency in buildings constructed with AAC blocks. Therefore, external walls made of 

AAC masonry blocks with distributed thermal resistance can be a promising alternative for increasing 

the envelope level of thermal protection and decreasing the thickness of required thermal insulation. 

4.  Application of eco-mechanical indexes to different construction solutions: comparison 

between AAC and LWAC masonry block performances 

 

As already mentioned, this work tries to summarize AAC performances through the definition of 

specific ecological and mechanical indexes, which can be combined with each other in order to obtain 

the most sustainable solution from both a social and an environmental point of view. Specifically, the 

main goal of the work is to understand which parameters should be considered in the definition of 

these eco-mechanical indexes, so as to identify a sort of “optimum” expression. Several possible 

alternative definitions are presented in Section 4.2. 

Eco-mechanical indexes can serve two main scopes. First, they can be used in tailoring the mix 

adopted for the production of material, so as to reduce the environmental impact without 

compromising mechanical performances, which is crucial especially in case of blocks with a load 

bearing function. In addition, these indexes can represent a quick and easy tool to perform a 

preliminary evaluation of the most sustainable solution among different, but alternative construction 

techniques, such as for example AAC and LWAC masonry units.  

Due to the abovementioned lack of original environmental data for the analyzed AAC blocks, the 

considered eco-mechanical indexes are not applied herein for the improvement of the material, while 

the attention is instead focused on the comparison among the performances of different concrete 

products available on the market for the realization of load-bearing masonry blocks in non-seismic 

areas. Once identified the “optimum” index, it can indeed represent a useful tool for the preliminary 

identification of the best building solution, orienting the construction workers in the choice of the 

“most virtuous” block among possible alternatives that seem formally equivalent to each other. 

4.1.  Eco-mechanical performances of AAC and comparison with other sustainable concrete masonry 

components  

The attention is focused herein on three typologies of concrete masonry units (CMUs), that is to say 

AAC, LWAC with integrated thermal insulation made of mineral wool (indicated in the following as 

LWAC1), and LWAC hollow blocks without thermal insulation (named LWAC2).  

As far as AAC blocks are concerned, mechanical indexes are defined on the basis of some of the 

experimental properties discussed in Section 3.1, while environmental parameters are taken from 

EPDs data of similar products, as discussed in Section 3.2. In this way, three possible solutions, named 

AAC1, AAC2 and AAC3 are obtained, characterized by the same mechanical parameters (the 

experimental ones), but with more or less efficient environmental performances (taken from the 

literature). 
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The data relative to the two considered LWAC blocks (LWAC1 and LWAC2) are directly taken 

from their EPDs and technical sheets provided by the Producers. On this point, it should be noted that 

there is a discrepancy between the amount of available environmental and mechanical parameters: 

while the first ones are more or less all provided in the technical documents, only the compressive 

strength of the blocks fc is generally given. For this reason, in this work the other mechanical 

properties of LWAC1 and LWAC2 blocks are calculated starting from the declared mean value of fc 

(equal to 2 MPa for both the types of units), according to the relationships provided for lightweight 

aggregate concretes by design codes. In more detail, the elastic modulus Ec and the tensile strength fct 

are calculated according to [35], while the fracture energy in tension Gft is obtained according to [30], 

by hypothesizing that both the LWCAs contain lightweight sand.  

Tables 3 and 4 briefly summarize the main data relative to both mechanical and environmental 

parameters for the 5 considered block typologies. For every block here presented, the selected system 

boundaries comprise manufacture of the concrete blocks, including the extraction of raw materials and 

auxiliaries and/or processing aggregates to form the product ready for shipping until it leaves the 

actual plant, according to the cradle to gate assessment. The results presented in Table 4 thus include 

the provision of all materials used – preliminary products – (phase A1 of LCA of the system 

boundary); transport processes to and in the plant (phase A2 of LCA of the system boundary); 

manufacturing processes including energy, waste, emissions (phase A3 of LCA of the system 

boundary). The usage and disposal stages of the block manufactured are not taken into consideration 

in this study, since no data are available for the time being, and therefore need to be supplemented for 

a further assessment within the context of the building use, when the blocks will be engaged. 

 

Table 3. Mechanical properties of the 5 CMU typologies considered in this work. 
 

 AAC1 AAC2 AAC3 LWAC1 LWAC2 

 (kg/m3) 445 600 480 450 600 

fc (MPa) 2.8 2.8 2.8 2.0 2.0 

Ec (MPa) 1610 1610 1610 596 1060 

Gft (N/m) 6.2 6.2 6.2 2.51 2.71 

 

Table 4. Environmental properties of the 5 CMU typologies considered in this work. 
 

 
 

AAC1 AAC2 AAC3 LWAC1 LWAC2 

GWP  (kg CO2-Eq.)  2.19E+02 1.68E+02 1.63E+02 8.40E+01 1.19E+02 

AP (kg SO2-Eq.)  2.19E-01 2.08E-01 2.10E-01 1.59E-01 3.51E-01 

ADP (MJ) 1.70E+03 1.20E+03 1.13E+03 4.14E+02 7.74E+02 

TNRE (MJ) 1.80E+03 1.29E+03 1.21E+03 4.78E+02 8.91E+02 

W  (m3)  7.87E+01 5.28E-01 5.60E-01 n/a 1.39E+02 

NHW  (kg) 4.69E+02 8.02E+00 1.56E+01 n/a 1.86E+01 

HW (kg) n/a 1.10E-02 2.78E-04 n/a 2.58E-02 

 

As concerns the Global Warming Potential (GWP), Table 4 shows that the most valuable block in 

terms of Low Carbon emission is the LWAC1 one, which registers the smaller amount of KgCO2 - Eq. 

GWP is dominated by the processes associated with cement manufacturing, alongside with other 

essential factors that in case of LWAC1 also includes the impact of thermal insulation and aggregates. 

Referring to Acidification Potential (AP), the block presenting the lower impact is once again 

LWAC1. In this case, AAC blocks register quite similar results, while LWAC2 block is characterized 

by the highest value of the examined parameter. 
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LWAC1 appears to be the better option also with regards to Abiotic Depletion Potential (ADP) for 

fossil resources. This parameter refers to the consumption of fossil resources, which embodies the 

energetic consumption during the manufacture of cement and aggregates. 

As concerns the parameter of Non-Renewable Energy (TNRE) – which takes into account the 

processes of energy consumption during the manufacture of block, as well as during the manufacture 

of cement and aggregates – the most environmental responsible block is still LWAC1, having a TNRE 

just equal to 4.78E+02MJ. 

Water consumption (W) registers the lower value in case of block AAC2 having a W just equal to 

5.28E-01, but data for LWAC1 are not available. 

Finally, Hazardous and Non-Hazardous Waste (HW and NHW) register the aggregated lower value 

for AAC2, even if some data are not available for AAC1, nor for LWAC1 blocks. 

4.2.  Application of different eco-mechanical indexes for the evaluation of the sustainability of AAC 

masonry blocks with respect to LWCA ones 

In this Section, the Authors propose some Eco-Mechanical Indexes EMIs to assess the global 

environmental and mechanical performance of AAC blocks with respect to LWAC blocks. The 

proposed indexes are summarized in the left part of Table 5, which reports the corresponding values 

obtained for the five considered solutions, based on the mechanical end environmental data reported in 

Tables 3 and 4. Indexes have been chosen according to the criteria set out in the following.  

As regards environmental parameters, GWP and TNRE are always considered in the definition of 

all EMIs, since they are recognized as the most significant Environmental Indexes (EI). Similarly, the 

most important Mechanical Index (MI), describing the behavior of blocks in compression, is 

recognized to be the compressive strength fc. 

The influence of mechanical parameters is investigated through the definition of the first 3 indexes 

EMI1-EMI3, which are characterized by the same denominator (i.e. by the same environmental 

parameters), while the terms at numerator are varied (that is, fc for compressive behavior, Gft for 

tensile behavior, fc Gft for both of them). On the contrary, indexes from EMI4 to EMI8 want to clarify 

the influence of different environmental parameters, for a given MI at numerator (i.e., fc). Finally, 

EMI9 represents a sort of “global index”, which includes all the most significant mechanical and 

environmental parameters at the same time.  

 

Table 5. Proposed eco-mechanical indexes and corresponding values for the considered solutions. 

Units AAC1 AAC2 AAC3 LWAC1 LWAC2

EMI1 = fc / (TNRE x GWP) [MPa /(MJ kgCO2-Eq)] 7.08E-06 1.29E-05 1.42E-05 4.99E-05 1.89E-05

EMI2 = Gft  / (TNRE x GWP) [(N/m) / (MJ kgCO2-Eq)] 1.58E-05 2.88E-05 3.17E-05 6.26E-05 2.55E-05

EMI3 = (fc x Gft) / (TNRE x GWP) [MPa (N/m) / (MJ kgCO2-Eq)] 4.41E-05 8.05E-05 8.86E-05 1.25E-04 5.10E-05

EMI4 = fc / (TNRE x GWP x AP) [MPa / (MJ kgCO2-Eq kgSO2-Eq)] 3.23E-05 6.21E-05 6.77E-05 3.14E-04 5.37E-05

EMI5 = fc / (TNRE x GWP x W) [MPa / (MJ kgCO2-Eq m
3
)] 8.99E-08 2.45E-05 2.54E-05 n/a 1.36E-07

EMI6 = fc / (TNRE x GWP x NHW) [MPa / (MJ kgCO2-Eq kg)] 1.51E-08 1.61E-06 9.13E-07 n/a 1.01E-06

EMI7 = fc / (TNRE x GWP x ADP) [MPa / (MJ kgCO2-Eq MJ)] 4.16E-09 1.08E-08 1.26E-08 1.20E-07 2.44E-08

EMI8 = fc / (TNRE x GWP x HW) [MPa / (MJ kgCO2-Eq kg)] n/a 1.17E-03 5.12E-02 n/a 7.31E-04

EMI9 = (fc x Gft) / (TNRE x GWP x 

AP x ADP)

[MPa (N/m) / (MJ kgCO2-Eq 

kgSO2-Eq MJ )]
1.19E-07 3.23E-07 3.73E-07 1.90E-06 1.88E-07

Eco-Mechanical Index (EMI)

 
 

For reading convenience, the same data are plotted in terms of histograms in Figures 5-6. The 

graphs also report the maximum, minimum and average values of each considered EMI, with reference 

to the 3 different AAC solutions (AAC1-AAC3 in Table 5). As can be seen, even if these three 

solutions are characterized by the same mechanical parameters and by a comparable density, the 

environmental performances can differ significantly from each other, depending on the greater or 

lower “virtuosity” of the Producers. Moreover, the gap between maximum and minimum values is 
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more pronounced when some specific environmental parameters are included in the definition of EMI. 

This is the case of water consumption, as well as of the production of hazardous and/or non-hazardous 

wastes, which can significantly vary from one Manufacturer to the other.  

A more detailed examination of the results reported in Figure 5 leads to the following observations. 

With reference to index EMI1 (Figure 5a), it can be stated that all the three AAC solutions, as well as 

LWAC2, are comparable to each other. LWAC1 clearly shows the best eco-mechanical performance, 

mainly because its GWP is negligible if compared to other GWP values. Similar results can be also 

obtained when considering indexes EMI2 and EMI3 (Figures 5b,c). In both cases, the average value 

obtained for AAC blocks is now equal or even higher than that corresponding to LWAC2, since the 

lower GWP and TNRE associated with LWAC2 are counterbalanced by the better behavior of AAC in 

tension (with higher values of Gft). 

The contribution of acidification potential is taken into account for the first time in the definition of 

an eco-mechanical index in EMI4 (Figure 5d). Quite homogeneous values of this index are obtained 

for AAC1, AAC2, AAC3 and LWAC2 blocks. A higher value of EMI4 is registered also in this case 

for LWAC1. 

A comparison among the considered construction solutions is more difficult when referring to 

index EMI5 (Figure 5e), since water consumption in different productions is extremely variable. 

LWAC2 production is certainly characterized by a larger water consumption (around 138 m3) with 

respect to AAC manufacture (whose average values is around 27 m3), and this represents an 

indubitable advantage in terms of sustainability for AAC blocks, also taking into account the limited 

available water resources. However, the same data relative to AAC production appear to be much 

dispersed, varying between 0.53 m3 (AAC2) and 79 m3 (AAC1), highlighting that this parameter 

should be better investigated in future research. For this reason, so far water consumption seems not to 

be a significant index to be considered in the comparisons.  
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Figure 5. Comparisons of eco-mechanical performances of AAC and LWAC blocks, obtained by 

considering different EMIs. 

 

EMI6 and EMI8 indexes (Figures 5f and 5h) includes the effect of wastes disposed in phase A1-A3 

for each block considered. The assessment of the waste accumulation is usually shown separately in 

EPD charts for the three main categories of disposed non-hazardous waste (Figure 5f), hazardous 

waste for disposal (Figure 5h) and disposed radioactive waste (negligible for the considered cases). 

Non-hazardous waste represents the greatest proportion both in AAC and LWAC production, whilst 

the fraction of hazardous waste is generally negligible, as clearly shown in Table 4. Also in this case, 

the so obtained eco-mechanical indexes are hardly comparable to each other, since the range of 

variability of waste production is extremely large, even in case of similar productions (see, e.g., AAC1 

and AAC2 for NHW, or AAC2 and AAC3 for HW). Moreover, no data are so far available for some 

block typologies (relatively to both NHW and HW for LWAC1, and relatively to HW for AAC1). 

Therefore, also the eco-mechanical indexes EMI6 and EMI8 appear to be not so significant and should 

be neglected. 

Index EMI7 takes into account the effect of ADP. As can be seen, the three AAC blocks are 

characterized by almost coincident values of this index, which are also comparable to that obtained for 

LWAC2. LWAC1 shows once again the best performance, related to its better ecological parameters 

(GWP, TNRE and ADP are indeed significantly lower with respect to the other examined products). 
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Figure 6. (a) Comparisons of eco-mechanical performances of AAC and LWAC blocks, obtained by 

considering all the significant mechanical and environmental parameters. 

 

Finally, a sort of “global” index, taking into account all the most significant mechanical and 

environmental parameters, is reported in Figure 6. As can be seen, water consumption, as well as non-

hazardous and hazardous waste are excluded from index definition for the abovementioned reasons. 

This global index shows that the average eco-mechanical performance of AAC is better than that of 

LWAC2, so evidencing that AAC block can actually represent a sustainable solution in the 

construction market. Further research work on the Life Cycle Assessment of AAC blocks already 

characterized by the Authors from a mechanical point of view could further confirm this assumption, 

providing more data to be analyzed. 

However, based on the information so far available, LWAC1 blocks with integrated thermal 

insulation appear to be characterized by significantly lower values of all the considered environmental 

parameters with respect to both AAC and LWAC2 blocks, so seeming the most virtuous construction 

solution.  

 

5.  Conclusions 

 

The present work represents a first attempt in the assessment of sustainability of masonry structures 

realized with AAC blocks, also in comparison with other competitive solutions, like those involving 

the use of LWAC blocks. To this aim, eco-mechanical indexes, already developed in the literature 

with reference to traditional concrete structures, are herein extended to the considered concrete 

masonry blocks. 

The obtained results show that the parameters used to elaborate the eco-mechanical indexes should 

be carefully selected, by individuating the most significant mechanical and ecological aspects for the 

analyzed material. However, these results should be regarded as preliminary data, since they are 

affected by some main limitations, which are discussed in the following.  

First of all, for both AAC and LWAC blocks, a general exertion in deriving complete mechanical 

data from the data sheets of the Manufacturers should be evidenced. For these reasons, in case of 

AAC, complete experimental data obtained by the Authors have been considered, while in case of 

LWAC, the main mechanical properties have been derived on the basis of the declared compressive 

strength, according to Code relations (but this has obviously limited the number of parameters to be 

included in the evaluation of MI).  

Moreover, the lack of original environmental data provided by the Producer for the considered 

AAC blocks has just allowed the Authors to evaluate block ecological performances EI referring to 

literature data (i.e. based on the EPDs of similar AAC blocks available on the marked). In this sense, a 

further limitation is related to the reduced availability of EPDs, which often differ from each other for 

the analyzed life cycle stages, making comparative reading ineffective also for similar blocks. To 

obtain more significant results, it is therefore necessary to perform a detailed EPD evaluation for the 



16

1234567890‘’“”

FIB Conference: Sustainable Concrete: Materials and Structures IOP Publishing

IOP Conf. Series: Materials Science and Engineering 442 (2018) 012011 doi:10.1088/1757-899X/442/1/012011

 

 

 

 

 

 

considered AAC blocks, already characterized by the Authors from a mechanical point of view. In this 

way, it will be possible to fully investigate the whole performances of a specific type of masonry 

block, by selecting among a wide range of both mechanical and environmental parameters. 

Finally, it remains to be defined how much the environmental impact of the blocks is embodied in 

the remaining part of their life cycle, also considering the use phase. Some partial information, which 

are however inadequate, can be deduced by evaluating the insulation properties of the blocks 

themselves, but more detailed studies including other significant environmental aspects are certainly 

needed. Similarly, more information should be acquired on the disposal phase, for which no reliable 

data are so far available. 
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