
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ISPCIET’2018

IOP Conf. Series: Materials Science and Engineering441 (2018) 012013

IOP Publishing

doi:10.1088/1757-899X/441/1/012013

1

Modelling of technological machines motion

Yu B Chechulin
1
, S K Buynachev

1

1
620002, 19 Mira street, Ekaterinburg, Russia Ural Federal University, Russia

email: uchechulin@mail.ru

Abstract: The software for modelling dynamic processes of technological machines drive

mechanisms using algorithmic language PYTHON.

Introduction

Dynamic analysis of transition and stable power processes in drive mechanisms of technological

machines is based on solving motion equations. The final task of defining optimal characteristics of

variable factors delivering minimal of power impacts at the design stage suggests mathematic

modeling. Motion modeling for a large complex system is always related to speed of action, memory

amounts and universal code. The use of ready packages in mathematic modeling is limited by many

factors.

We believe Python algorithmic language and the following approach offer a solution to that. For

kinematic scheme figure 1 see graph figure 2.

Figure 1. Kinematic scheme of CPR mill.

The graph describing the structure of this machine at figure 2. Peaks are masses and connections

are elastic connections. We define

ISPCIET’2018

IOP Conf. Series: Materials Science and Engineering441 (2018) 012013

IOP Publishing

doi:10.1088/1757-899X/441/1/012013

2

Figure 2. Graph of machine structure (I-mass coordinates (peaks), j-mass coordinates difference.

We use system of coordinates one of which describes position of masses,
=(1,..,n)

T
,

And the other
=(1,..,n)

T,
 – connections between them. These coordinates are expressed via functions with generalized

coordinates
(,q)=0

(,q)=0
Free oscillation equation is

.q
T
[

T
]

-1
+q

T
[

T
]

-1
F=0.

This equation requires Jacobi matrixes, reverse matrixes, then we formulate second derivatives of

quasi-inertial coordinates and calculate the strength of elastic connections. To simplify the system we

use graph theory [1]. However as a result of linearization and simplification system adequacy is lost. It

must be mentioned that nonlinearity of lever systems and gaps. This equation provides direction to

several simplifications. First of all each connection equation can be transformed as an expression of

one coordinate
i+i(q)=0, i=1,n
i+i(q)=0, i=1,m.
Secondly we take quasi-inertial coordinates as generalized coordinates
+q=0.
As a result the equation of free oscillation takes a simpler form,
Expression F we will analyze later
+

T
F=0

In which matrix  is diagonal and elastic forces result in coordinates . Lagrange equations of the Ist

type also simplify and look as
-T = 0,
F-I = 0,
T+

T
I = 0.

Value of undetermined multipliers I depends on coordinates , which are expressed from masses via

generalized coordinates. To simplify programming connections between peaks of the graph and

ISPCIET’2018

IOP Conf. Series: Materials Science and Engineering441 (2018) 012013

IOP Publishing

doi:10.1088/1757-899X/441/1/012013

3

coordinates we can use splitting procedure[3]. Into each connection we put the peak of new type

and bind with the peaks of coordinates . Number of new peaks equals the number of old connection

equations. We get a two-segment graph figure 2. Each segment of the graph has one class that can be

developed into the necessary direction.

Figure 3. Two-segment graph

Right segment class can be described as [4].

class M:

def __init__(self,m):

self.m,self.f,self.x,=m,0.0,[0.0,0.0,0.0]

def step(self,dt):

if self.m==0: return

self.x[2]=self.f/self.m

self.x[0]+=0.5*dt*self.x[1]

self.x[1]+=dt*self.x[2]

self.x[0]+=0.5*dt*self.x[1]

Left segment class looks as follows.

class C:

def __init__(self,a,b,c,r=0.0):

self.a,self.b=a,b

self.c,self.r=c,r

self.f,self.ds,self.dv=0.0,0.0,0.0

def F(self):

ds,dv=self.a.x[0]-self.b.x[0],self.a.x[1]-self.b.x[1]

self.f = ds*self.c+dv*self.r

ISPCIET’2018

IOP Conf. Series: Materials Science and Engineering441 (2018) 012013

IOP Publishing

doi:10.1088/1757-899X/441/1/012013

4

self.a.f-=self.f

self.b.f+=self.f

Creation of right segment objects.

Jd,Js1,Js2,Jk1,Jk2 =M(150),M(0.1),M(0.1),M(0.5),M(0.5)

Jkl,mkl =M(10.0),M(1450.0)

V=[Jd,Js1,Js2,Jk1,Jk2,Jkl,mkl]

Creation of left segment objects.

cds,css=C(Jd,Js1,3540.0,12.5), C(Js1,Js2,3140.0,12.5)

csk1,csk2,ckk=C(Js1,Jk1,3540.0,12.5), C(Js2,Jk2,3140.0,12.5)

ckkl1,ckkl2= C(Jk1,Jkl,3540.0,12.5), C(Jk2,Jkl,3140.0,12.5)

ckm1,ckm2= C(Jk1,mkl,3540.0,12.5), C(Jk2,mkl,3140.0,12.5)

E=[cds,css,csk1,csk2,ckk,ckkl1,ckkl2,ckm1,ckm2]

Here programming stops and two lists V and E should be scanned. As a result we present graphs at

figure 4.

Figure 4. Motion and load at acceleration and stable motion (Red - speed of engine rotor, blue -

engine rotor momentum, green - oscillation of mill crate position in a horizontal plane).

Results and Discussion

In this case connections in the graph have a meaning of information flows. Matrix transformations are

not needed. As a result we get a solution reflecting mill motion. For the first time we get a description

of crate in a horizontal plane so easily and precisely.

Conclusion

Suggested modeling solution has the following advantages:
1. Number of masses and hardnesses is not limited.
2. No limitation in nonlinearity description.
3. Simplicity of programming.

References

[1] Veitz V L 1969 Dinamika mashinnykh agregatov (Mashinostroenie)

[2] Evstigneev V A 1985 Primenenie teorii grafov v programmirovanii (М. Nauka)

[3] Thulasiraman M, Grafy K 1984 Seti i algoritmy: translated from Engl (М. Mir)

ISPCIET’2018

IOP Conf. Series: Materials Science and Engineering441 (2018) 012013

IOP Publishing

doi:10.1088/1757-899X/441/1/012013

5

[4] Bizli D 2000 Yazik programmirovanija Python (К. DiaSoft)

