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Abstract. In this paper we consider the application of analytical, numerical-analytical and 

numerical methods for solving boundary value problems for structures made from alloys with 

shape memory. As the defining relations, the equations of structural-analytic mesomechanics 

were applied. 

Introduction 

Materials with the shape memory effect (SME) have unique properties that are absent in most 

traditional materials used in engineering applications. They are called intellectual materials of the XXI 

century, as well as smart materials. Accordingly, their use provides new design capabilities, which 

makes it possible both to improve the characteristics of devices and to offer innovative solutions. 

Alloys with shape memory (ASM) are widely used in medicine, engineering, aircraft building, 

construction, etc. To calculate the stress-strain state and the engineering solution of problems, it is 

necessary to develop an appropriate mathematical apparatus that allows to reflect the real mechanical 

properties of ASM. The development of a mathematical model of ASM that takes into account the 

features of their behavior in simple and complex deformations, as well as the creation of methods for 

the analytical and numerical solution of boundary value problems for structures and products from 

SPF are relevant. 

The basic equations of structural-analytic mesomechanics are given in [1-3]. They make it possible 

to perform a forecast of the basic deformation phenomena in alloys possessing shape memory effects. 

In this paper, the defining relations of the deformation type are presented, and therefore it becomes 

possible to apply the mathematical apparatus of the theory of plasticity for solving boundary value 

problems with elements made of ASM. Within the framework of this approach, some boundary-value 

problems that admit an analytical solution are solved-the problem of deformation of a long thick-

walled tube under internal pressure; numerical-analytical solution by the method of boundary elements 

- calculation of the truss structure; numerical methods - rod system, bending of the beam, and also 

plates with different support of the ends. Only isothermal martensitic transformations are considered. 

A detailed derivation of the defining relations is given in [3]. 

1.Determined relations for an alloy with shape memory effect 

at the load stage: 
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At the unloading stage: 
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where i  – voltage intensity; Е – elastic modulus; BФ – material constant; 0
i – intensity of voltage 

accumulated during the loading phase; iD
q

T
k

0

0 ; T0 – thermodynamic equilibrium temperature; q0 –

 thermal reaction effect; Di – distortion of phase transformation; 
k

МT нDМА

н


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
 – the voltage of the 

onset of direct martensitic transformation; TD – deformation start temperature; Мн, Мк – the 

temperature of the beginning and the end of the direct martensitic transformation, respectively; 

k

МT кDМА

к





  – endurance of martensitic transformation, 

k
П


  – limit of pseudoelasticity at 

unloading;  – width of hysteresis of the martensitic transformation; 
dt

d i
i


  ; H(…) – Heaviside 

function.  

The diagram at the stage of loading in the regime of austenitic pseudoelasticity (ferroelasticity), 

obtained by the formula (1) is shown in Fig. 1. 

 

Figure 1. Deformation diagram i – i under 

active loading. 

 

2. Boundary value problems for ASM 

Initial data for the alloy TiNi are presented in Table 1. 

Table 1. The initial data for Ti-Ni alloy. 

Name Formula 

Characteristic temperatures of forward and reverse 

martensitic transformation 
Мн =330К, Мк = 320К 

Ан =370К, Ак = 380К 

Crystallographic constant k  k = 0,29 КМРа
-1

 

Constant BФ BФ = 0,06∙10
-2 

МРа
-1

 

Elastic modulus E Е = 7,42∙10
4
 МРа 
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Deformation temperature TD1 ТD1 = Ак = 380К 

Deformation temperature TD2 ТD2 = (Ак + Ан)/2 = 375К 

Voltage of the beginning of a direct martensitic 

transformation at deformation temperature TD1  

(phase yield strength)
 11 Т

МА

н
 


 

МРа 17211


 Т
МА

н
  

Voltage of the beginning of a direct martensitic 

transformation at deformation temperature TD2  

(phase yield strength)
 22 Т

МА

н
 


 

МРа 15522


 Т
МА

н
  

Voltage of the end of a direct martensitic 

transformation at deformation temperature TD1 

1max1
 



МА

к
 

МРа 2071max1



 МА

к
 

Voltage of the end of a direct martensitic 

transformation at deformation temperature TD2 

2max2
 



МА

к
 

МРа 1902max2



 МА

к
 

The module of ferroelasticity 11Фγ кЕЕ   (tangent 

module) at the deformation temperature TD1 
МРа 41411Фγ  кЕЕ  

The module of ferroelasticity 22Фγ кЕЕ   (tangent 

module) at the deformation temperature TD2 
МРа 45222Фγ  кЕЕ  

2.1. Analytical calculation of a thick-walled pipe from ASm under internal pressure, under conditions 

of direct martensitic transformation 

Formulation of the problem. Determine the voltage distribution in the cross section of a thick-walled 

pipe r1 = 10 мм, r2 = 20 мм under internal pressure, made of alloy TiNi, having a shape memory 

effect, under conditions of direct martensitic transformation. 

Assumptions: 

1) the material characteristics are calculated at different but constant temperatures; 

2) the material undergoes elastic and inelastic (phase) deformations; 

3) we take a bilinear model of material deformation. 

The results of the calculation for the deformation temperature ТD = Ак are presented in table 2. 

Table 2. Results of calculation of pipe yield radius 

depending on internal pressure. 

N Yield radius Tr , мм Load p, МPа 

1 10 75 

2 13 110 

3 15 125 

4 18 137 

5 20 139 

 

Graphs of voltage distribution normalized to МА

н



1
  for different pressure values are shown in the 

figure 2. 
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Fogure 2. The distribution of voltage normalized to МА

н




  by pipe radius: 

а) diagram of radial voltage; b) the diagram of the circumferential voltage; 

c) diagram of axial voltage; d) an equivalent voltage diagram. 

2.2. Core systems 

Calculation of a statically indeterminate rod system. 

Formulation of the problem. The rod system consists of two rods made of ASM with different 

mechanical characteristics (Figure 3). Both materials have the same elastic moduli E. Tangent 

modules and voltage of the onset of direct martensitic transformation МА

н




  are different. The 

external horizontal force is МА

н
AF 


 2  and is applied at the junction of two rods, where A is the 

cross-sectional area of both rods. Deformation temperature of the first rod TD1, of the second TD2. It is 

required to determine the stresses in the rods by the finite element method, using the iterative Newton-

Raphson algorithm with the following initial data: 

 

Table 3. Initial data. 

Cross-sectional areas of rods А А = 314,159 мм
2
 

Length of each rod L L = 50 мм 

Load 5
1 10083,12  TAR   Н  
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Figure 3. The calculation scheme. Deformation diagrams. 

 

Table 4. Results of the calculation of the rod system. 

Voltage in the first rod: Voltage in the second rod: 

МРа 180)( 11111  ТkТ Е    МРа 164)( 22222  ТkТ Е   

Stresses in the first rod are tensile, in the second - compressive. 

 

2.3. Calculation of a statically indeterminate farm 

For calculation, the numerical-analytical method of boundary elements [4] is used in conjunction with 

the methods of elastic solutions and variable elasticity parameters. 

     Formulation of the problem. Determine the internal forces in the rods of a statically indeterminate 

shape made from ASM, figure 4. 

 

Table 5. Initial data. 

Name Formula 

Tangent module, Pа 
11

2
31

0 10469,2)(
15




 кн

D

к ММ
DT

q
Е  

Phase yield strength, Pа 8106 Т  

Deformation temperature, К ТD = 300 

Cross-sectional areas of rods А =3,142∙10
-4

 м
2
 

Load 002,0 EAF  

Geometric parameter a = 1 м 
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Figure 4. The calculation scheme. Boundary element grid. 

Table 6. Results of the calculation of the shape. 

Elastic solution The solution of the nonlinear problem 

Н10727,2 510 N ; Н10089,2 520 N ; 

Н10751,6 530 N ; Н10145,3 521 N ; 

Н10409,3 531 N ; Н10671,1 532 N . 

Н10827,1 510 N ; Н10214,3 520 N ; 

Н10307,7 330 N ; Н10470,2 521 N ; 

Н10284,2 531 N ; Н10571,2 532 N . 

2.4. Calculation of a beam on two supports loaded with a distributed load 

A single-span beam of square cross-section, made of ASM with the following parameters, presented in 

Table 7, was calculated. 

 

Table 7. Initial data. 

Load, МPа q = 10 

Deformation temperature, K ТD =Ак = 380  

Length, мм a = 10 

Thickness, мм h = 1 

Width, мм b =1 

The axial moment of inertia, мм
4
 083,012/3  hbJ z   

 

The calculation was carried out by three methods: Ritz, elastic solutions, variable elastic moduli. 

For approximation of the deformed beam axis, the Vlasov method was used. The problem was solved 

with two boundary conditions: 1) both edges are hinged-supported, 2) both edges are rigidly 

embedded. 

 

Table 8. Results of the calculation of the beam by the Ritz method. 

The bending moment diagram M(x) 

Hinged-supported beam Rigged beam 
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Table 9. Maximum voltage. 

The Ritz 

method 

The method of elastic 

solutions  

The method of variable 

elasticity parameters 

Hinged-supported beam cross-section  (a/2;h/2), МPа 

177 176 176 

Rigged beam cross-section  (0;h/2) and  (a;h/2), МPа 

178 174 174 

2.5. Plates 

Formulation of the problem. A square plate of ASM loaded with a distributed load with two anchors 

along the contour: articulated and rigidly fixed. The calculation was carried out by three methods: 

Ritz, Vlasov-Kantorovich together with the method of elastic solutions and the finite difference 

method together with the method of elastic solutions. 

Table 10. Initial data. 

Load, МPа q = 10 

Deformation temperature, K ТD =Ак = 380   

Length, мм a = 10 

Thickness, мм h = 1 

Table 11. The results of calculating the plate by the Ritz method. 

Voltage intensity i , МPа 

Hinged-supported plate Rigged plate 

i

+ 

In the center of the plate 1790, i  i

 
In the center of the plate and in the  

middle of the sides 

173,0,  Cii   

 

Table 12. Results of calculating the maximum voltage intensity 

for a hinged-supported plate by various methods, MPa 

The Ritz 

method 

The Vlasov – Kantorovich 

method 

together with the method of 

elastic solutions 

The finite difference method 

together with the method of 

elastic solutions 

178
 

173 174 
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