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Abstract. Cellulose derivatives have high potential for use as solid biopolymer electrolytes in 

proton batteries because they are biodegradable, affordable, have good mechanical properties 

and their ionic conductivity can be enhanced with addition of ionic dopant. In this work, we 

developed a new type of solid biopolymer electrolytes (SBEs) based on 2-hydroxyethyl cellulose 

(2HEC) doped with glycolic acid (GA) as an ionic dopant. A solution casting technique was used 

to prepare the SBEs. The ionic conductivity and structural properties of the SBEs were analysed 

using Electrical Impedance Spectroscopy (EIS), Fourier Transform Infrared spectroscopy 

(FTIR) and an X-ray Diffractometer (XRD). The highest ionic conductivity achieved was 3.80 

×10-4 S cm-1 for the sample with 40 wt.% GA concentration at room temperature. FT-IR analysis 

showed that complexation occurred in the polymer system from the shifting of ʋC-O and ʋsCOO- 

band of 2HEC and GA. FTIR deconvolution revealed the increasing pattern of percentage free 

mobile ions with the addition of GA concentration until 40 wt.% GA , which can be related to 

the high ionic conductivity of the sample. In XRD analysis, all SBEs shows amorphous nature. 

Based on the results obtained, GA is a good ionic dopant because it succeed in improve the ionic 

conductivity of the 2HEC film.  

1. Introduction  

Solid biopolymer electrolytes (SBEs) is one of the most active areas of study in material research for 

several years. They caught the attentions of many researchers because of their excellent properties to be 

used in small electrical devices such as batteries. They are mechanically stable, lightweight, 

environment friendly and has no leakage problem when used as electrolyte. SBEs were prepared by 

doping the host polymer with various type of ionic dopant which, can hugely increase the electrical 

properties of the host polymer [1, 2]. Some application that are suitable for use of SBEs are in solid-

state batteries, supercapacitors, power windows and many other solid-state electrochemical devices [3-

5]. SBEs usually consist of a crystalline phase-that possess a regular structure with immobile ions, and 

an amorphous phase having no regular structure with mobile ions [6-10]. A few research groups have 

demonstrated this phenomenon and revealed the biphasic structure of SBEs [11, 12].  

The arrangement of the polymer molecules greatly affects the physical properties, chemical 

behaviour and reactivity of the SBEs. In solid state, the movement of ions mostly occurred in the 

amorphous phase and moving from one site to another by hopping mechanism [13-15]. Proton 

conducting polymer is a special class of solid electrolytes with hydrogen ions acting as charged carriers, 
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which was first suggested by Rogers and Ubbelohde, in 1950 [16] and many more researchers 

subsequently [17-19]. The hopping of ions lead to the increase in ionic conductivity of the material. This 

suggests that there is a close interplay of the structural nature and conductivity in ionic conducting 

polymer [20-22].  

In this work, a new type of SBEs based on 2-hydroxyethyl cellulose (2HEC) doped with glycolic 

acid were prepared. 2HEC is one of the cellulose derivatives created by means of etherification. This 

polymer is widely used in cosmetic, latex paints, building materials, cleaning product and even used as 

an oilfield chemical as a lubricant, along with many other specialty applications [23-25].  

Pharmaceuticals also used 2HEC combined with hydrophobic drugs in capsule formation to improve 

dissolution [26]. 2HEC is a water-soluble polymer that acts as thickener, binder, emulsifier, stabilizer, 

film former, and exhibits pseudo-plastic solution behaviour, tolerates salts and retains water. As a good 

sorbent, 2HEC has a good affinity of ions due to the presence of many polar hydroxyl functional groups 

that can serve as coordination sites for permanent or temporary ion attachment [27-32]. The ionic 

conductivity of a polymer can be enhanced by introducing a good ionic dopant into the polymer system, 

which promotes the dissociation of proton (H+).   

GA is a weak acid base that is a naturally occurring material and it is environmentally friendly. 

Although many reported that ammonium salt is a good ionic dopant, it is interesting to investigate the 

GA behaviour as an ionic dopant. This is because GA can undergo partial dissociation, which produces 

proton (H+) as a dissociated charge together with glycolate anion (RCOO-), and the charged monomer 

attached to the backbone of GA [33-35] that eventually can enhance the ionic conductivity of the 

polymer host. In addition, it is also environmentally friendly. Hence, GA was chosen as an ionic dopant 

to 2HEC for this work. The 2HEC, GA and 2HEC-GA SBEs were characterised using EIS, FT-IR and 

XRD to investigate its ionic conductivity and structural properties. To the best of our knowledge, there 

are no published works on the 2HEC-GA SBEs; therefore, it is a great opportunity to investigate the 

effect of GA on the properties of 2HEC biopolymer.  

 

2. Materials and Methods   

Materials. The materials used to prepare the SBEs are 2-hydroxyethyl cellulose (2-HEC) from Sigma 

Aldrich, Glycolic acid (GA) from Merck and distilled water as solvent. Firstly, dissolved 2HEC in 

distilled water, then doped with a GA from 10 wt.% to 50 wt.% at 10 wt.% increments. Stir the solution 

until homogenous and by using solution casting technique, the solution were dried in oven at 60°C. 

Completely dried samples were stored in desiccators to prevent moisture contamination. Table 1 lists 

the sample designation in this work.  

 

Table 1. Sample designation  

Sample  Carboxymethyl  

cellulose   

(CMC) (g)  

Glycolic acid   

(GA)  

 (wt.%)  

GA0  

GA10  

GA20  

GA30  2  

0  

10  

20  

30  

GA40   40  

GA50   50  

 

Experimental techniques. The SBEs were characterised using Electrochemical Impedance 

Spectroscopy (EIS), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffractometer (XRD). 

The ionic conductivity of the SBEs were measured using HIOKI 3532-50 LCR Hi-Tester interfaced 
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with a computer in the frequency range from 50 Hz to 1 MHz. The measurement setup was as depicted 

in Figure 1. The ionic conductivity of the SBEs was calculated using Equation (1).  

 

 
𝜎 =

𝑡

𝑅𝑏𝐴
 

(1) 

  

Figure 1. EIS measurement setup.  

 

In the equation, σ is the ionic conductivity, t is the thickness of SBE (cm), Rb is a bulk resistance (Ω), 

and A is the contact area of the SBE and electrode (cm2) [2, 11]. A Thermal Nicolet 380 FTIR 

spectrometer equipped with an Attenuated Total Reflection (ATR) accessory was used to analyse the 

structure of the SBEs. They were scanned at frequency that ranged from 4000 cm-1 to 700 cm-1 with a 

resolution of 4 cm-1 at ambient temperature. The percentage of free ions were determined from FT-IR 

deconvolution that were utilised using Origin 8 fitting software based on the Gaussian-Lorentz function 

[21]. The free ions (%) can be calculated by using Equation (2)  

 
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑖𝑜𝑛𝑠 (%) =

𝐴𝑓

𝐴𝑓 + 𝐴𝑐
× 100% 

(2) 

XRD analysis was done by using a Ringaku MiniFlex II Diffractometer. Before the procedure, 

2HEC-GA SBEs were cut into suitable size, then adhered onto a glass slide before being placed in the 

sample holder of the diffractometer. The SBEs were directly scanned at Bragg’s angles of 2θ, between 

5° and 70° with CuKα source radiation (wavelength =1.5406 Å).  

 

3. Results and Discussion  

3.1 Ionic Conductivity Analysis  

Figure 2a shows the Cole-Cole plots for selected samples GA0 and GA40 (inset). Cole-Cole plot for 

GA0 has semicircle and spike region where they can be related to the SBE being partially resistive and 

capacitive. Cole-Cole plot for GA40 shows no semicircle and it can be a sign of increased ionic mobility 

(Ahmad & Isa, 2015). Bulk resistance Rb, value can be determined from the interception of the 

semicircle and inclined spike with the Zr-Axis. Figure 2a shows the examples on the determination of 

Rb value from Cole-Cole plot for sample GA0 and GA40 respectively.   

The ionic conductivity of the SBEs was plotted in a graph of ionic conductivity against the GA wt. 

% and depicted in Figure 2b. From the graph, the ionic conductivity of 2HEC SBE increased with the 

addition of GA concentration. Pure 2HEC SBE has ionic conductivity of 3.43 x 10-6 S cm-1 and with the 

addition of 40 % GA, the ionic conductivity increased to 4.01 x 10-4 S cm-1, which is almost two degrees 

more. Early observation shows that GA is a good ionic dopant to 2HEC. The increased ionic 

conductivity can be related to the increased number of free mobile ions in the polymer system, thus 

increasing the number of ionic conduction, which is a significant factor in enhancing the ionic 

conductivity of the SBEs [44, 46].   
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Figure 2. Cole-Cole plot; (a) GA0 and GA40 (inset), and (b) Ionic conductivity versus GA 

concentrations plot.  

 

3.2 FTIR Analysis of Simple Organic Acid  

The FTIR spectra of GA, 2HEC and 2HEC-GA in a range of 1200-1800 cm-1 were shown in Figure 3. 

From the figure, it can be seen that the addition of GA concentrations yielded two main absorption 

features in the 2HEC that are associated with carboxyl group. According to Hay et al. (2007) [36], 

protonated carboxylic acid (RCOOH) resulted in absorption band that correspond to the carbonyl stretch 

of ʋC=O (1690 cm-1 - 1750 cm-1) and hydroxyl vibration, ʋC-OH (1200 cm-1 - 1300 cm-1) which 

comprised of C-O and C-OH group. This vibration often resulted in a single and broad absorption band. 

According to Cabaniss and McVey, (1995) [37], these changes can be dependent on a few factors, two 

of which include; i) Electron density of carboxyl that was affected by the presence of electron donating 

or withdrawing functional group; and ii) Inter/intra-molecular hydrogen bonding involving a carboxylic 

oxygen or a proton. These two factors are typically affected more consistently and predictably in the ʋas 

mode relative to the others, making it a useful indicator of structural complexation. However, in this 

work, the appearance of a ʋas peak cannot be observed due to the overlapping of naturally absorbed 

water band of 2HEC (~1647 cm-1) and the changes are most consistently observed at the ʋs mode of 

carboxyl group [46].   

 

 

Figure 3. FTIR spectra of pure GA, pure 2HEC and 2HEC-

GA (40%) film at the 1200-1800 cm-1 spectra region.  
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3.3.  FTIR Analysis of 2HEC-GA SBEs  

The complexation of GA and 2HEC was observed in FTIR analysis. Figure 4 represents the FTIR 

spectrum of pure 2HEC and 2HEC-GA system separated by four region (a) 1150-1350 cm-1, (b) 

15001800 cm-1, (c) 900-1200 cm-1 and (d) 1400-1500 cm-1, respectively. From the figure, the peak 

intensity for both ʋC-OH and ʋC=O of GA in the spectrum of 2HEC-GA system experienced a reduction 

in intensity, which due to the deprotonation state of GA (dissociation of H+) in the SBE system. The 

absorption bands localized at ~1237 cm-1 and ~1730 cm-1 were due to the stretching vibrations of single 

and double CO bonds of the carboxylate group of GA, respectively. They are the characteristic features 

of the IR spectrum of GA and the increased intensity with higher GA concentration is expected. In 

Region c, the peak at ~1055 cm-1 is attributed to the ʋC-O of 2HEC. With the addition of GA, the band 

shifted to a higher wavenumber to ~ 1086 cm-1. This confirms the complexation of both the host polymer 

and ionic dopant.  

From Region (d), it can be observed that a new peak emerged at ~1440 cm-1 for sample GA10, which 

is believed due to the interactions between 2HEC and GA. The band corresponds to symmetric ʋsCOO, 

which was affected by the increment of GA concentration. With the addition of GA, the band shifted to 

a lower wavenumber to ~1436 cm-1 and the intensity of the peak increased. These significant changes 

can be associated with the formation of anionic and cationic species through higher dissociation of ionic 

dopant, thus allowing protonation on 2HEC chain structures. The 2HEC and GA peaks observed in this 

work are comparable with other works where all the peaks were found at their own specific range [2434].   

 

 

Figure 4. FTIR spectrum of 2HEC-GA system in the (a) 1150-1350 cm-1, (b) 

1500-1800 cm-1, (c) 9001200 cm-1 and (d) 1400-1500 cm-1 region.  



6

1234567890‘’“”

The International Fundamentum Sciences Symposium 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 440 (2018) 012038 doi:10.1088/1757-899X/440/1/012038

3.4 FTIR Deconvolution  

FTIR deconvolution was performed to isolate the possible peaks presence, intensity change and shifting 

of the bands, hence further determine the contribution of H+ ions as a charge carrier in 2HEC-GA SBE 

system [21, 22, 38]. The deconvolution was based on the Gaussion-Lorentz function and was done using 

Origin 8 fitting software. The sum of the intensity of all the deconvoluted peaks was ensured to fit the 

original spectrum where regression value of each peak is approximately unity (R2 = 0.9998). The 

deconvolution peaks of ʋsCOO- were depicted in Figure 5.  

 

  

Figure 5. FTIR deconvolution of 2HEC: (a) 10%, (b) 20%, (c) 30%, (d) 40%, 

(e) 50% of GA in 13901490 cm-1 spectra region.  

 

The band representing the free ions can be found in region between ~1390 cm-1 and ~1490 cm-1 

where the symmetric vibration of carboxylate anion (ʋsCOO-) is at, this is comparable to work done by 

Hay & Myneni (2007) [36]. From Figure 4, the peak located at ~1407 cm-1 can be assigned to contact 

the ions peak, meanwhile the peak at ~1465 cm-1 is the C-H characteristic band of 2HEC. It can be 

observed that peak intensity of glycolate anion increased with increasing GA concentration with 

maximum concentration at 40 wt. % and then slightly decreased at 50 wt. %. This increment could 

indicates the increase of number of mobile ions and this was shown in Figure 6 where the percentage of 

free ions alongside with ionic conductivity in a function of GA concentrations were plotted. Here, it is 

observed that the percentage of free ions increased until GA40 and then decreased at GA50, which in 

agreement with the hypothesis mentioned earlier.  
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With the addition of GA concentrations, more free ions dissociated into the polymer system, 

promotes ionic conduction and then enhanced the ionic conductivity of the SBE. Whereas at GA50, the 

percentage decreased and it can be attributed to the free ions start to associates back creating clusters of 

ions. This led to decreased in ionic conductivity of the SBE. From the observation, it can be simplified 

that the high ionic conductivity of GA40 was due to the high number of free ions. High contact ion 

percentage can be related to the ions that did not dissociate, hence explaining the low ionic conductivity 

of the SBE [45].  

 

  

Figure 6. Percentage of free ions and ionic conductivity in a 

function of GA content.  

 

3.5 XRD Analysis  

2HEC is a cellulosic material that consists of crystalline and amorphous domains in various proportions 

[39, 43]. The reactivity and chemical behaviour are strongly influenced by its structural nature where 

most of the reactant penetrates only the amorphous regions. It has been reported that cellulose has the 

most intense reflection peak centred approximately at 2θ~22.00°. Figure 7 shows the X-ray pattern for 

all SBEs and pure GA. Here, it is observed that the pure GA has multiple crystalline peaks that reveal 

the crystalline nature of the material. Meanwhile, there are no distinctive crystalline peaks observed in 

the SBEs, which indicated that GA has completely solvate in the polymer system. In a work done by 

Attia and Elkader (2013), they reported that the peak attributed to crystalline domain of 2HEC was 

situated at 2θ = ~22.00°. In this work, pure 2HEC film shows intense reflection peak at ~21.28°, which 

represent the strongest cellulose peak of the crystalline domain in the polymer host [24]. The broadened 

cellulose peak with the incorporation of GA concentrations indicates the SBEs are in amorphous state.  

 

  

Figure 7. X-ray diffractograms (a) all SBEs, (b) pure GA.  
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4. Conclusions  

Solid biopolymer electrolytes based on 2HEC doped with various GA concentrations was successfully 

made via solution casting technique. The highest ionic conductivity achieved was 3.80 x 10-4 Scm-1 for 

a sample with 40 wt.% GA concentration at room temperature. FTIR revealed the interactions between 

the host polymer and ionic dopant was from the shifted peaks of ʋC-O and ʋC-OH vibration mode. The 

highest conductive sample possess the highest number percentage of free ions hence confirms the 

relations that a high number of free ions helps in increasing the ionic conductivity. X-ray diffraction 

analysis shows all the SBEs are in an amorphous state with no crystalline peak detected. It can be 

concluded that GA is an effective ionic dopant because it successfully increased the ionic conductivity 

of the 2HEC.  
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