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Abstract. The SURF (Speeded Up Robust Features) is one of the most commonly used 
artificial feature extraction algorithms and has a good robustness. SURF is widely used in 
image processing and machine vision. This paper introduces the implementation of SURF in a 
more comprehensive way, and applies it to the feature extraction of clothing images. The 
clothing features extracted by using SURF can be applied in clothing classification, 
identification, retrieval and matching in combination with machine learning method. It can also 
be used as input sample of deep neural network to improve classification or recognition 
accuracy. 

1.  Introduction 
Feature extraction is an important part of image processing, it is the basis for the follow-up, such as 
image recognition, retrieval and fusion. Scale Invariant Features Transform(SIFT) is an algorithm for 
image feature extraction and description. SIFT was proposed by David. G. Lowe[3] in 1999 and 
perfected in 2004. SIFT is considered to be more effective and commonly used feature extraction 
algorithm. Speeded Up Robust Features(SURF) is proposed by Herbert Bay et al.[5] in 2006, it’s a 
novel scale- and rotation-invariant detector and descriptor. SURF inherits the advantages of SIFT and 
it also has good robustness. When the image has scale and rotation change or affine transformation, it 
can still get the features description effectively and steadily. Related experiments show that the SURF 
is about 3 times faster than SIFT at running speed, and its comprehensive performance is better than 
SIFT[2]. 

2.  Features extraction by SURF 
The process of features extraction by SURF is divided into three parts. The first part is to transform 
gray image into integral image and the SURF relies on integral image for conducting convolutions 
operation at faster speed. The second part is to build image pyramid by approximating the Hessian 
matrix. The third part is to obtain features descriptor. 

2.1.  Integral image 
Integral image allow for fast computation of box type convolution filters. The value I(x,y) of pixel 
point (x,y) in the integral image is the sum of the grayscale values of all the pixel points in the 
rectangular area formed from the upper left point of the image to the point (x,y). Therefore, the sum S 
of the grayscale values in a rectangular area of the image can be obtained from equation (1).  
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In formula (1), I(A), I(B), I(C), and I(D) are the integral image values at the A, B, C, and D, 
respectively. The pixel point A, B, C, and D are the upper left, upper right, lower left, and lower right 
points of the rectangular area. 

2.2.  Hessian matrix approximation 
The Hessian matrix approximation is used to detect interest points. Its determinant value reflects the 
local information of the image. The Hessian matrix H(x,y,σ) for the pixel point (x,y) in the image is 
defined as follows:  
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In formula (2), Lxx(x,y,σ), Lyy(x,y,σ) and Lxy(x,y,σ) are the convolution results of image at pixel point 
(x,y) with Gaussian second-order partial derivative in x, y and xy direction respectively. Let Dxx(x,y,σ), 
Dyy(x,y,σ) and Dxy(x,y,σ) are the convolution results of image at pixel point (x,y) with approximated 
Gaussian second-order partial derivative in x, y and xy direction respectively. And the approximated 
Gaussian second-order partial derivatives in x, y and xy direction are called box filters. Then the 
determinant of the Hessian matrix is simplified as follows[2]:  
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In theory, for different σ and the box filter size, Y is different. In order to simplify the operation, the 
value of Y is set to constant 0.9. Based on the above assumption, the formula (3) is further simplified 
to formula (4).  2

xyyyxxapprox )D9.0(DD)H(Det −=  (4) 

In formula (4), Det(Happrox) is the blob response of the pixel points. Using the box filters to traverse 
all the pixels in the image, we can obtain the filter response map at a certain scale. 

Figures 1-4 demonstrate Gaussian function, its second-order partial derivatives and corresponding 
box filters. Figure 1 shows the 3D and 2D graphs of the Gauss function. In figures 2-4, the left are 3D 
graphs of the Gaussian second-order partial derivative in the x, y and xy direction, respectively. The 
middle are 2D graphs of the Gaussian second-order partial derivative in the x, y and xy direction, 
respectively, and the right are the box filters in the x, y and xy direction, respectively. The values in the 
black area, white area and gray area of the box filters are different. The size of the box filters here is 9
×9 (the size of box filters will be described in detail in the next section). The Gaussian function with 
σ = 1.2 and its second-order partial derivative function in different directions shown in figures 1-4 are 
drawn by using MATLAB. 

 

 

Figure 1. Left to right: the 3D and 2D graphs of Gauss's function. 
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Figure 2. Left to right: the 3D graph, the 2D graph and box filter of 

the Gaussian second-order partial derivative in x direction. 

 
Figure 3. Left to right: the 3D graph, the 2D graph and box filter of 

the Gaussian second-order partial derivative in y direction. 

 
Figure 4. Left to right: the 3D graph, the 2D graph and box filter of 

the Gaussian second-order partial derivative in xy direction. 
 

2.3.  Using box filters to establish scale space representation 
Scale space representation is the description of image at multiple scales. It is the basis for detecting 
invariant features. Koenderink[9], Lindeberg[10], Florace[11] and others used different mathematical 
methods to prove that the Gaussian kernel is the only transform kernel to realize scale transformation. 
In the SURF, scale space representation is usually implemented as an image pyramid.  

The scale space is divided into many octaves. An octave represents a series of filter response maps 
obtained by convolving the same input image with filters of increasing size. Each octave is subdivided 
into a constant number of scale levels. In general, one octave contains four scale levels. The 
relationship between the octave index o and the scale level index t, the box filter response length l, and 
the box filter size length L is shown in formulas (5)-(7)[1]. Using formulas (5)-(7), box filter response 
length and box filter size length between different octaves and scale levels can be calculated. For 
example, the box filter response length for the 0th scale level of the 0th octave is 3, the box filter size 
length L is 9, and its scale s is 1.2; it is used as the lowest scale for computing the blob response maps. 
Based on formulas (5)-(7) , the box filter size length in the next scale levels can be computed as 15, 21, 
27. If the size of the original image is still larger than the size of the box filter, a higher octave should 
be built. The number of detected interest points in the image will decay rapidly as the scale increases. 

 1)1t(2l 1o ++= +  (5) 
 )1)1t(2(3l3L 1o ++×=×= +  (6) 
 )9/L(2.1s ×=  (7) 

2.4.  The generation of features descriptor 
The generation of features descriptor is divided into three steps, the first step is to detect interest points, 
the second step is to assign the orientation of interest point, and the third step is to obtain features 
descriptor.  

2.4.1.  Localization of interest point. According to the formula (4), the blob response of the image can 
be obtained, and then the extreme points in the blob response can be determined using 3D non-
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maximum suppression. These extreme points are candidate interest points. The 3D non-maximum 
suppression is to take the pixel point to be detected as the center point, and compare it’s blob response 
value not only with the neighboring pixels’ at the same scale but also with the neighboring pixels’ in 
the same position at the upper and lower scales. When the blob response value of the center point is 
the maximum or the minimum, it can be used as a candidate interest point. Since the input image is a 
discrete one, the candidate interest point is not necessarily the true interest point. Therefore, 
interpolation operations should be applied in the scale space to find the position of the true interest 
points. To this end, the Taylor series is used to estimate Hessian determinant at interest point based on 
formula (8): 
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where X0=(x0,y0,s0)T gives the location information of the candidate interest point, and X1=(x1,y1,s1)T 
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where ΔX is the offset of rows, columns and scales. When ΔX is less than the threshold value 0.5, X1 
represents a interest point; if there is a non-conformity, the new candidate interest point that is formed 
by adding X0 and the integer part of ΔX together is judged again until the value of the offset is less than 
0.5; Putting ΔX into the formula (8), we can get the blob response value of the interest point. If the 
offset is still bigger than 0.5 after the specified number of iterations, the candidate interest point is 
abandoned. 

2.4.2.  Orientation assignment of interest point. In order to ensure the rotation-invariance, the 
orientation of the interest point needs to be found. First, the circle with a radius of 6s around the 
interest point should be extracted, s represents the scale at which the interest point is detected. Second, 
a sliding fan window of size π/3 in the circle is selected to calculate the Haar wavelet response dx, dy 
in x-direction and y-direction respectively. Then the two summed response ∑dx and ∑dy are obtained 
to get the local orientation vector (mω,θω) based on formula (10) and formula (11). The figure 5 shows 
the Haar wavelet filters. Third, the sliding fan window slides in every step of 0.2 radian, and the Haar 
wavelet response in the new region are obtained to get a new local orientation vector. Finally, the 
longest one ( max{mω}) within all the vectors defines the orientation angle θ of the interest point (see 
formula (12)). Figure 6 shows the process of obtaining the orientation vector by taking Haar wavelet 
responses within three areas as an example.  
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Figure 5. Haar wavelet filters.  Figure 6. Orientation assignment map of interest point. 

 

2.4.3.  Feature descriptor. The first step for establishing the descriptor is to extract a rectangular area  
which has a size of 20s×20s and is centered on the interest point and oriented along the orientation of 
the interest point. The second step is to split the rectangular area into 16 parts, with each part having 
the size of 5s×5s. In the third step, the 5s×5s area is divided into 25 samples. In the fourth step, not 
only the Haar wavelet response ∑dx’ and ∑|dx’| along the orientation, but also the Haar wavelet 
response ∑dy’ and ∑|dy’| along the direction perpendicular to the orientation are calculated at these 25 
samples. These four responses(∑dx’,∑|dx’|, ∑dy’,∑|dy’|) constitute the feature descriptor of the 5s×5s 
area. Thus, the feature descriptor for each interest point is a 64-dimensional vector. In figure 7, the left 
figure shows the rectangular area centered on the interest point, and the right figure shows the Haar 
wavelet response within each area of 5s×5s. 

 
Figure 7. Feature vector description of interest point. 

 

3.  Features extraction of clothing images 
Feature extraction of clothing images is implemented based on SURF algorithm mentioned above. The 
features extraction effects are shown in figures 8-10. Figures 8-10 (a) are the original costume image 
downloaded from https://www.deepfashion.cn/. Figures 8-10 (b) show detected interest points for the 
original images. The circles in figures (b) are the detected interest points, the size of the circle 
represents different scales. The number of detected interest points in the three figures (b) is 1768, 3870, 
1050, respectively. Figures 8-10 (c) give detected interest points for the original image that is 
subjected to rotation or scale change. The number of interest points in the three figures (c) is 1767, 964, 
and 1041, respectively. Experiment results demonstrate that the SURF can still extract the features 
accurately and effectively after the image is rotated or scaled. 
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(a) The original image  (b) Detected interest points 

for the original image  
(c) Detected interest points 
for the original image that 

is subjected to rotation 
Figure 8. Detected interest points for dress image. 

 

 

 

 

 

(a) The original image  (b) Detected interest points 
for the original image  

(c) Detected interest points 
for the original image that 
is subjected to rotation and 

scale change 
Figure 9. Detected interest points for satchel image. 

 

 

 

 

 

(a) The original image  (b) Detected interest points 
for the original image  

(c) Detected interest points 
for the original image that 

is subjected to rotation 
Figure 10. Detected interest points for shoes image. 

 

4.  Summary and Prospect 
This paper introduces the SURF implementation process in detail, and uses this algorithm to extract 
features of clothing images, verifying that it is an excellent local feature descriptor and has advantages 
of scale- and rotation-invariance. The experiment results show that it has a good effect on the features 
extraction of clothing images. 

Image feature extraction technology is one of the most important contents in computer vision.  
With the continuous improvement and optimization of feature extraction algorithm, the artificial 
algorithm has gradually shifted to deep neural network. The deep neural network starts "end-to-end" 
learning directly from the image data. It learns the inherent regularity of image by stacking layers of 
networks, so it can extract more abstract high-level semantic information. Figure 11 shows the image 
features extracted from 16 convolution layers of the VGG-19 pre-training model[12] with the upper left 
showing the first convolution layer’s output and the lower right the 16th convolution layer’s output. It 
can be seen from the figures that the outputs of the first few layers are mainly concentrated in the 
edges and texture parts; with the deepening of the layers, the features are more and more abstract and 
concise. 
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The advantages of deep neural network in image feature extraction, image classification, image 
recognition, etc. are based on medium and large-scale data. However, in many applications, it is 
difficult to obtain a large amount of labeling data or the cost for getting the data set is too high. Even if 
the training data is a large-scale one, it is difficult to cover all situations, for example, a training data 
set may do not include the affine transformation of various magnitudes. In view of the advantages of 
SURF, such as local features description, scale- and rotation-invariance, affine-invariance, some 
scholars are exploring the combination of SURF and deep neural network to obtain the higher 
precision feature descriptor. 

 

 
Figure 11. Convolutional output features of VGG-19 pre-training 

model. 
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