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Abstract. By the controlling of variable, the influences on the film interface strength that film-

line molding process had were investigated. The interfacial bonding strength under the 

circumstance where various of processing parameters (temperature, film thickness, injecting 

speed) were combined was measured through a normalized 90° peel test. And we used Super-

high magnification lens zoom 3D microscope to observe the Interface structure around the 

interface and the section of interface was observed too. To profoundly study the interfacial 

bonding strength mechanism, using the numerical simulation method, we analysed the 

temperature changes of the interface. And the crystallinities in different processing parameters 

combination situations were monitored by thermal characterization DSC. And then we 

calculated the crystallinities of the melt at the interface, drawing a conclusion about the 

relations between crystallinity and interface strength. The results show that the process 

conditions are favorable for improving the crystallinity of the interface and have obvious 

effects on the strength of the interface. 

1. Introduction 

Film-insert molding (FIM), a technique also known as in-mold decoration, is a relatively new 

technique in which molten resin is injected to fill the cavity after a preprinted film ,which is formed as 

the shape of the cavity is inserted into the cavity. Recently, FIM has been widely used in injected 

molded parts such as automotive panels, labels for mobile phone, and household appliance. Compared 

with traditional injection molding, FIM is one-step process without extra post-processing including 

screen printing ,which can reduce manufacturing time and cost. Furthermore, the product is well 

protected in harsh abrasive environments with film, so the product is finished with high 

quality ,durability and aesthetic value. Moreover, the hot resin would wet and partially melt the film, 

which can provide better adhesion of the film to the substrate. It is important to stick to products 

through the lifetime effectivity and lasting, and the challenge for sufficient adhesion is similar to other 

processing such as welding, coating[1], and injection overmolding[2-6].  

In the past decades, there have been many experimental studies that investigated the effect of 

material combination and processing parameters on the interface adhesion which determines the 

properties of final product. Y.W. Leong[7] measured the effect of molding conditions such as barrel 

temperature, injection speed and holding pressure on the morphological properties between 

Polypropylene(PP)-Film and PP Matrix. It was found that higher barrel temperature promotes better 
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interface adhesion. Yamaguchi, S[8] studied the effect of crystallization on interface adhesion between 

PP film and PP substrate. In the latter work, He studied the adhesion between Polycarbonate (PC) Film 

and Polycarbonate-Acrylonitrile-Butadiene-Styrene(ABS) Substrate and  he found that adhesion 

increased with thicker film [9]. The effect of molecular orientation induced by various injection speed 

on the interface was measured [10] 

In these studies, fundamental understandings of the interface adhesion have been explained with 

one or more of following mechanism: interface interlocking, molecular diffusion and entanglement, 

crystallization, and adsorption theory[11-14]. To obtain the desired film-substrate interface bonding, 

higher melt temperature is necessary to promote molecular interpenetration, and compatible 

combination of film and substrate material should also be guaranteed, although the effect of holding 

pressure and injection speed remain uncertain in terms of different material combination. The final 

adhesion strength is complicated being the result of a sum of the contributions mentioned above. 

For semi-crystalline polymer-polymer adhesion, besides molecular entanglement, the 

crystallization at or near the interface region also plays an important role in the mechanical properties 

and attracts a lot of attention[15, 16] .Formation of crystal depends on various factors such as 

nucleation location, rate of crystallization, transcrystallinity, and molding conditions[17, 18], being 

more complicated than amorphous polymer. However, the interface region between film and substrate 

is still in a rudimentary stage. Previous attempts focusing on the effect of processing conditions such 

as injection speed, melt temperature on the interface crystallization, the understanding of decoration 

film and mold temperature which determine the interface crystallization is still lacked. Thus, a deep 

study of the decoration film is necessary. An amorphous PC/ABS resin was in previous investigation 

of film’s effect on adhesion. In this study, semi-crystalline resin polypropylene was used. The 

influence of film thickness, mold temperature on the interface morphology and adhesion was explored 

as well as the injection speed. The crystallinities in both the film-substrate and controlled specimen 

(without film) were monitored by thermal characterization DSC. 90° Peeling test was performed to 

gauge interface adhesion strength. Thermal analysis and Simulation were performed to get better 

understanding of the temperature variations at resin-film interface. The relationship between 

crystallinity and interfacial bond strength was established to enable the control of product properties. 

2. Experiment and Methods 

2.1 Materials 

The substrate resin employed in this study was a commercial grade polypropylene (PP 1215C) with 

melting point of 165℃, density of 889kg/m
3
, thermal conductivity of 0.255 W/(m·K) , and specific 

heat of 3100 J/(kg·K). The material of insert plastic film was polypropylene. Various thickness of the 

insert film used in the study were 400um, 500um, and 600um. The injection mold was made by P20 

steel with density of 7850 kg/m
3
, thermal conductivity of 31.5 W/(m·K) , and specific heat of 501.6 

J/(kg·K). 

2.2 Film-insert molding 

PP substrate resin was injected to a rectangular shape(size: 140mm×60mm×2mm) using the JSW-

180H.The PP film was attached to one side of the mold wall prior to injection. Adhesive tape was used 

at the both ends to avoid the slide of film. PP resin was injected over the film. Rectangular specimens 

were cut form the product to perform peel and tensile test. Specimens and product dimensions are 

shown in Figure. 1(a). One of the PP halves was adhered to thin-layer polyimide film to obtain a 

nonstick region so that the film could be detached easily from the substrate during the peeling test, the 

peeling test is shown in Figure. 1(b). Products devoid of the film insert were also molded as control. 

Injection speed, barrel temperature, film thickness and mold temperature were varied to investigate the 

interface adhesion. Details of the injection molding conditions are listed in table 1.   
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                                                  (a)                                                                                   (b) 

Figure. 1. Injection molding species and peeling sample dimensions 

(a)Injection parts; (b)peeling test pieces 

Table 1.Flim injection processing conditions 

Barrel temperature 220℃, 240℃, 260℃ 

Injection speed 10, 40, 70 mm/s 

Mold temperature 30℃, 50℃, 70℃ 

Film thickness 0.4mm, 0.5mm, 0.6mm 

Holding pressure 50 MPa 

Holding time 3 s 

Cooling time 60 s 

 

2.3 Peeling and tensile test 

Adhesion strength between film and substrate was gauged by a normalized 90° peel test using the 

zwick Proline Testing Machine. The toughness (GA) was determined by  

(1 cos )A

P
G

B
 

                                                                 (1) 

where P is the peel force,B is the width of the layer and θ is the peel angle. The configuration and the 

dimensions of the specimens for the peel test are indicated in Fig.1b. Peeling arm was attached to the 

grips of a universal machine, while the fixed arm was attached to a moving plane to maintain peeling 

angle 90°, a peel test speed of 10 mm/min was used. This velocity ensured the test to be realized in a 

reasonable time period while maintaining the required alignment between specimen arms. All tests 

were done on at least five specimens to ensure reproducibility and accuracy of results. 

2.4 Injection molding simulation 

During the film-insert molding, temperature alerts the mechanical properties of final product. It is 

necessary to track the change of temperature field. Temperature of mold interface and melt interface 

can be measured by sensors[19]. However, it’s difficult to track the change of polyer-film interface 

temperature and the polyer-film interface temperature is of vital importance to the adhesion. It’s 

difficult to track temperature change. According to processing conditions , we simulate the effects of 

film on the temperature variation during film-injection molding using analysis software ANSYS and 

then set similar boundary and initial conditions .As the real injection process is complex, several 

assumptions are made: a) the initial temperature was barrel temperature, b) there are no temperature 

gap at the interface. In addition, we simulated the control of mold-polymer interface temperature.  

2.5 Thermal and Morphological characterization 

For polymer characterization of crystallization , differential scanning calorimeter (DSC) PerkinElmer 

DSC8000 was performed to assume thermal behavior of the materials. Heating rate of experiment was 

10℃/min under the nitrogen atmosphere .We used VHX-1000C Super-high magnification lens zoom 

3D microscope to observe the Interface structure around the interface and the section of interface was 

observed too. 
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3. Result and discussion  

3.1 Interface temperature variation 

3.1.1. Influence of mold temperature Figure 2(a) is the interface temperature change simulation in 

ANSYS software during the cooling period. It can be seen that at the beginning of the cooling, the 

temperature at the interface drops rapidly below the melting point of PP and then slowly cools down. 

When the temperature of the mold is 30 ℃, cooling time of the interface temperature decreasing 

rapidly from the cylinder temperature to the melting point of PP is about 0.4s. While for mold 

temperature of 50℃, the time for the temperature above to decreas to melting point is about 0.5s, 

longer than mold temperature of 30℃. For mold temperature of 70℃, the time period is 0.9s, twice 

more than the time of mold temperature 30℃. When the temperature is higher then the PP melting 

point, PP molecules have a high degree of activity, which can carry out a lot of movement, providing a 

basis for better interface combination, moreover, during the cooling period, with mold temperature, 

resin temperatures are respectively higher leading to faster crystallization rate, which is preferred for 

higher crystallinity. 

 
              (a)                                                                          (b)     

  Figure. 2. Interface temperature variation for different mold temperature 

a)Different mold temperature;  b) different film thickness 

             

3.1.2. Influence of film thickness The presence of the film hinders heat transfer resulting in a slower 

temperature drop at the interface of film and PP resin. Cooling curve of the first few seconds is shown 

in figure 2(b).Within the first period of cooling, the temperature drop is almost the same. However 

with the increasing of time, the effect of film is more obvious. For thicker film, there is higher 

temperature at the interface. What’s more, time of interface temperature above PP melting point 

increases from 0.37S to 0.75s responding to the film thickness from 0.4mm to 0.6mm, which is 

preferred for better adhesion of interface and higher crystallinity. While for interface temperature 

below PP melting point, molecular movement is significantly reduced, influencing little on the 

interface adhesion. 

3.2 Interface crystallization 

Injection of PP will crystallize during the cooling process.The change of the injection molding process 

parameters will directly affect the degree of crystallinity and grain size. Crystallization has virtual 

importance to adhesion strength and grain damage during peeling test absorbs more energy than 

amorphous structure leading to higher strength. The DSC curves of different mold temperature are 

shown in figure 3. Calculated crystallinity of injected species is shown in figure 8; the crystallinity of 

PP interface is relatively lower than core region because the melt temperature at the interface dropped 
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quickly when coming into contact with film. There is not enough time for melting to crystallize. While 

for core region, the temperature is higher leading to faster crystallization speed and resulting to higher 

crystallinity.  

 
Figure. 3. DSC curves of PP at interface 

 
                                        (a)                                                                                  (b) 

 
(c) 

Figure. 4.  Crystallinity of different injection speed and mold temperature 

(a)Influence of temperature on  crystallinity; (b).Influence of injection speed on crystallinity; 

(c).Influence of film thickness on crystallinity 

The surface crystallinities of different of mold temperature are shown in figure 4(a). With mold 

temperature and melt temperature rising, crystallinity rises respectively, because rising of mold 

temperature and melt temperature accelerate crystallize rate leading to in higher crystallinity. Similar 

observation is shown is figure 4(b):crystallinity rises from 0.42 to 0.46 respectively with injection 

speed rising, for crystallization induction time is reduced and there is faster crystallize rate. 

Interestingly, for 240℃-50℃ the crystallinity changed little while there is large fluctuation in peeling 

force, which probably shows that molecular movements effects more when crystallinity is relative 

high. The crystallinity variations of the molded parts are exhibited in Fig. 4(c) with respect to film 
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thickness and are compared with the parts molded without inserted film. In this figure we can observe 

that the crystallinity increase slightly with film thickness. Furthermore, the parts molded with film had 

larger crystallinity than parts molded without film. The reason can be contributed to the retardation in 

heat transfer that decreases polymer melt cooling rate. What’s more, retardation in heat transfer is 

effected by film thickness. For thicker film, there is greater retardation leading to higher crystallinity 

which is preferred for better interface bonding, in correspondence to peeling force of film thickness 

showed in Fig.6.  

3.3 Film–substrate adhesion  

The peeling failure was of an adhesive–cohesive type showing a force–displacement peel graph like 

the one represented in Fig.5(c) curve. As illustrated, there are three kinds of force-displacement curve. 

Line (Ⅰ) is relatively smooth and the force is smaller in comparison to others. It can be assumed that 

this type of interface bonding is of adhesive bonding which the crack generated and extended before 

film reached the yield stress. Interface morphology of line (Ⅰ) is shown in Fig. 5(a) curve. Only a small 

part of film left on the substrate surface indicates the interface bonding in the preliminary stage. For 

line (Ⅱ), a very distinct saw-teeth-like curve can be observed in cohesive type which is initiated by 

simultaneous crazing of the substrate and film surfaces during 90° peel test. Line (Ⅱ) shows an 

indication of “stick–slip” phenomenon and it’s believed that two factors account for the phenomenon. 

Firstly, the interfacial bonding is high enough so that the surface of the film would yield until a critical 

level, after which separation of the yielded regions will occur and the extension of crack will continue; 

secondly, as soon as the yield region failed, the film would “spring back” hindering crack propagation 

thus causing peeling force to drop suddenly, then peeling force would rise again for next crack 

propagation. However, if the interface adhesion is very high, film would undergo plastic deformation 

losing its ability to “spring back” during peeling test. The load curve of crosshead displacement 

illustrated as line (Ⅲ) is gentle without “stick–slip” phenomenon. Morphology of the peeling interface 

is shown in fig. 5(b) curve, large region of the interface is covered by film, showing that bonding 

meets the requirements of normal use.  

 
Figure. 5. Exfoliation interface ultra depth image and Peeling curve  

The peeling force of different injection process parameters are showed in figure 6 and figure 7 . It 

shows that adhesion strength rises with melt temperature rising(showed in figure 6). For lower mold 

temperature the interface adhesion is relatively poor. The reason is probably that there is not efficient 

molecular movement at lower mold temperature. For higher mold temperature there are longer time 

period of temperature above PP melting point, providing active molecular entanglement leading to 

better interface adhesion. Figure 6. also shows that at temperature 240℃-70℃, interface adhesion is 

much higher than other temperature combination that achieves degree of cohesive type. Relevant 
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peeling force of mold temperature is shown in fig.6. Compared with Fig.4, it can be assumed that 

adhesive bonding is effected to some extent by crystallization.  A summary of the specimen conditions 

after the peel test is tabulated as Table 2. 

 
Figure. 6. Interface adhesion of different mold temperature 

Table 2. Specimen Conditions after Peel Test 

Melt Temp.(℃) 
Injection Speed(mm/s) 

10 40 70 

220 ◊ ◊ ◊ 

240 ◊ ◊ ○ 

◊ adhesive bonding  

○ cohesive bonding  

The interfacial bonding strength at different injection speeds as shown in Figure 7. shows that, for 

the melt die temperature of 240 -50℃, the increase of the injection speed can promote the interfacial 

bonding strength. According to the results of the study of Figure 4 (b), the lifting injection speed can 

increase the shear effect, which is beneficial to the crystallization and the small size of the molecule. 

At the crystal growth, the crystallinity of the interface increases obviously, from 40.2% to 43.6%, the 

crystal becomes more and more energy is required to destroy the interface. In addition, the injection 

speed increases the temperature of the plastic melt, the film surface melts more, can also form a 

thicker diffusion entanglement layer, and the interfacial strength increases. 

 
Figure. 7. Peeling force of injection speed 

Koch and Mc Carren[20] stated that a thinner film was preferred to enable a firmer film–substrate 

adhesion in his report. Nevertheless, the findings in our work are contrary to their results and similar 

to the report of Leong[8]
.
 Figure 8. shows the adhesion strength of different film thickness. It can be 

concluded that for thicker film there is higher interface adhesion. The existence of PP film hinders 
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heat conduction of melting resin, causing interface temperature higher leading to blurry boundary and 

more active molecular movement. For higher melt and mold temperature, the interface strength is as 

high as ten times of lower melt and mold temperature. It seems that temperature is the primary factor 

affecting interface bonding strength. 

 
Figure. 8. Peeling force of film thickness 

3.4 Interface morphology 

 
Figure. 9. Interface morphology of the substrate after 90° peeling test (a)240℃-30℃; (b) 240℃-50℃; 

(c) 240℃-70℃; (d) 10mm/s; (e) 40mm/s; (f) 70mm/s; (g) 0.4mm; (h) 0.5mm; (i) 0.6mm 

Figure 9 shows the interface morphology of 90° peeling test under different injection conditions. 

Figure 9(a)-(c) shows the substrate morphology of different mold temperature with film thickness of 

0.4mm. For lower temperature of 30℃ there is rarely PP film left on the substrate indicating poor 

interface adhesion of adhesive type. But for higher temperature of 50℃, there are relatively more PP 

g
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film remain after peeling test and the corresponding peeling force in figure 4 rises to 280N/mm. At 

mold temperature of 70℃ , transition of interface bonding to cohesive type starts. Morphology 

indicates the mixing mode of two types. Interface morphology of different injection speed is illustrated 

in Figure 9(d)-(f): peeling force rise from 1729N/mm to 3739 N/mm. large area of PP film is left on 

the surface showing the bonding is sufficient to meet the requirements of use. In Figure 9(f) the PP 

film covers most area of the substrate. Figure 9(g)-9(i) is the morphology of different film thickness 

with melt and mold temperature of 240℃-70℃. Similar discovery is found that peeling force (shown 

in figure 6) is in positive correlation with cover area of PP film. The larger covered area is, the higher 

peeling force becomes. The reason is that for cohesive bonding the interface is melt and there are more 

molecular entanglement and crystallization near the interface leading to higher energy that is needed to 

break entanglement and crystal. 

4. Conclusion 

Bi-layer parts composed by PP film/substrate combination have been successfully produced by film 

insert molding technique. This research performs a CAE simulation investigating the effect of the film 

used in the IMR process on the temperature field of the mold and its impact on crystallinity as well as 

mold temprature. Simulation shows that for thicker film and higher mold temperature , there is higher 

interface temperature due to heat conduction obstruction and lower cooling rate. Results of the study 

show that interface bonding is significantly affected by melt temperature, injection speed, mold 

temperature and film thickness. Three types of peeling curves are obtained suggesting different 

bonding types, namely, adhesive, cohesive and mixed type. it is shown that interface crystallinity of 

FIM parts is altered by changing film thickness because film act as an insulator hindering heat 

conduction from the resin to mold, which leads to lower cooling rate. Effects of mold temperature on 

crystallinity are more significant due to higher mold temperature and lower cooling rate resulting in 

higher crystallinity. The interface crystallinity rises linearly with mold temperature rising. With the 

intrinsic characteristic of viscous fluids, resin temperature rises during injection process leading to 

faster crystallize rate. For faster injection speed, there is higher crystallinity. Our study shows that 

crystalliniy at the film-substrate interface region influences film-substrate adhesion. For adhesive and 

transition type, effects of crystallinity is significant. Higher crystallinity of the substrate due to 

obstructed cooling during injection molding is believed to contribute to interface bonding. 

Interestingly for interface bonding of cohesive type, the crystallinity rises little with injection molding 

parameters and molecular entanglement affects interface strength a lot due to more active molecular 

movement and more effective entanglement. This suggested that crystal plays a decisive role in the 

initial stage namely adhesive type of interface bonding and lead bonding type conversion. When it 

comes to cohesive boding, molecular entanglements takes the leading role dominating interface 

bonding strength. 
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