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Abstract. With the composition and control of modern electromechanical products more and 

more complex, the time of solving simulation model is longer and longer. The response surface 

simulation optimization method is an effective method to reduce the simulation time, however, 

the number of design sampling points of response surface approximation is still large. In this 

paper, we propose a sparse representation response surface model to accurately reconstruct the 

source model with small amount sampling points. By means of the sparse representation of the 

source model on a specific basis, most of the coefficients are zero which can be solved by the 

equations constructed from small number of sampling. Sparse representation response surface 

models include sparse response surface and quasi-sparse response surface which are 

respectively applied to the case where the number of sampling points is greater than and less 

than the degree of sparse. Sparse response surface runs quicker and quasi-sparse response 

surface has higher accuracy. Two test functions and one engineering practice problem are 

employed to compare the performance between sparse representation response surface model 

and other common response surface models. The results show that the sparse representation 

response surface model has better performance in approximate accuracy and simulation 

efficiency. 

1.  Introduction 

With the complex function of modern electromechanical products (such as vehicles, engines, CNC 

machines and so on), the degree of intelligence is improving, the system composition and control are 

becoming more and more complicated. Therefore, modelling and simulation technology has been 

widely used in the design process to improve the overall performance of the product  [1]. 

In the process of products modelling and simulation, simulation models often reflect the multi-

disciplinary, non-line and other significant features, which cause a long time to solve the simulation, 

maybe take as many as 30 to 160 hours [2]. As the product simulation optimization needs to call the 

simulation process several times, which takes longer time, it is difficult to achieve the objective of 

product optimal design. Therefore, the efficient simulation of complex products has become an urgent 

problem in the process of engineering product design. 

Because the complex product model has a long computation time and the simulation model may 

not be a complete explicit mathematical equation, the existing method usually regards the simulation 

model as a black box function, and uses the optimization algorithm to search globally in the design 
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space to expect to reduce the call times of black box function [3]. Among those methods, the response 

surfaces simulation optimized method based on computer experiment design is an effective method [4]. 

For the source model with unknown shape in advance, the response surface of the approximation 

target is constructed by random sampling and target estimation in the design space, and the accuracy 

of the response surface is improved by increasing adaptive sampling points. The following response 

surface models are mainly used at present[2]: (1) Polynomial Response Surface (PRS), (2)Multivariate 

Adaptive Regression Splines (MARS), (3) Kriging (Ordinary Kriging (OK) and Blind Kriging (BK)), 

(4) Radial Basis Functions (RBF) and Extended Radial Basis Functions (ERBF), (5)Support Vector 

Regression (SVR). By means of iterative adaptive sampling and response surface approximation in the 

design space, these response surface simulation optimization methods establish the intrinsic function 

relation between design variable and the objective function value to search the optimal design point 

quickly and improve the simulation optimization efficiency. However, when the response surface 

shape is more complex, the number of sampling points used to construct the response surface and the 

number of black box function’s calling time will be correspondingly more. 

Compressed sampling theory is a new theoretical framework of information acquisition and 

processing proposed in the field of signal processing [5; 6]. Based on the sparse representation, the 

signal (or image) can be acquired and reconstructed with high fidelity through a very small amount of 

non-adaptive sampling. In the simulation optimization process, the target (or constraint) estimate in 

the design space is similar with the image and signal, and the compression sampling can be used as a 

new response surface constructing method which we call sparse representation response surface 

(SRRS). We first construct a set of function bases, if the source model can be sparsely represented on 

the set of function basis (coefficients are mostly zeros), then the non-zero coefficients can be solved 

only by a small number of sampling points, so as to build sparse or quasi-sparse response surface 

which can reduce the calculation cost and improve the simulation optimization efficiency. 

The rest of the paper is organized as follow: in section 2, compressed sampling method is 

introduced; we introduce the method of SRRS include sparse response surface and quasi-sparse 

response surface corresponding applied to the number of sampling points is greater than and less than 

the degree of sparse degree in section 3 and section 4; the effect of SRRS is shown and verified in 

section 5; at last, the conclusion is given. 

2.  Compressed sampling method 

Consider a n-dimension signal 𝒙 ∈ 𝑹𝑛×1 expended in a set of orthogonal basis {𝜑𝑖}𝑖=1
𝑛 , which is: 

𝒙 = ∑ 𝜃𝑖𝜑𝑖
𝑛
𝑖=1 .                                                                              (1) 

Written in matrix form: 

𝒙 = 𝜱𝜣,                                                                                       (2) 

where 𝜱 = [𝜑1, 𝜑2, ⋯ , 𝜑𝑛] ∈ 𝑹𝑛×𝑛 is the sparse matrix (also known as dictionary), 𝜑𝑖  is the atom, 

𝜣 = [𝜃1, 𝜃2, ⋯ 𝜃𝑛]𝑇 ∈ 𝑹𝑛×1  is expansion coefficients vector. Assuming that the majority of the 

elements in the coefficient vector 𝜣 are zero, or close to zero, that is, the number of nonzero elements 

𝑘 ≪ 𝑛, then it can be said that the signal 𝒙 can be sparse on the basis 𝜱. k is called sparse degree 

which means the number of nonzero elements. Compressed observing the signal with an observed 

matrix 𝚿 ∈ 𝑹𝑚×𝑛 which is not related to the dictionary 𝜱: 

𝒚 = 𝚿𝒙.                                                                                  (3) 

We can get m linear observation responses 𝒚 ∈ 𝑹𝑚 . Recovering the signal x from compressed 

observation response 𝒚 is a problem of solving linear equations. However, since 𝑚 < 𝑛, Eq.(3) is 

invalid linear equations which has infinite solutions. By combining Eq.(2) and Eq.(3), we obtain: 

𝒚 = 𝚿𝒙 = 𝚿𝚽𝚯 = 𝑨𝚯.                                                               (4) 

Although Eq.(4) is still invalid linear equations, since coefficient vector 𝚯 is k sparse, we can 

recover the coefficients 𝚯 from compressed observation response 𝒚 by a mathematical method, then 

obtain signal x from 𝒙 = 𝜱𝜣.  Literature [5] [6] pointed out that the correlation between observation 

matrix and sparse basis should be low, that is, to meet the condition of Restricted Isometry Property 
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(RIP). So that we can solve the sparse representation coefficients and reconstruct the source model if 

the number of sampling points met a certain condition. 

Solving the sparse representation coefficients based on the observational system equation model 

Eq.(4) is essentially an optimization problem that search the easiest solution with the constraint of the 

equation model, that is to solve Eq.(5): 

min‖𝜣‖0    𝑠. 𝑡. 𝒚 = 𝜳𝒙 = 𝑨𝜣,                                                          (5) 

where ‖𝜣‖0  is the number of nonzero elements in 𝜣 . It can be found that solving Eq.(5) is a 

combinatorial optimization problem of NP hard. 

At present, the method of greedy and relaxation can be used to solve this problem. The greedy 

algorithm is represented by matching tracing [7] (MP), orthogonal matching tracing [8] (OMP), 

generalized orthogonal matching tracing [9] (GOMP), etc. The greedy algorithm is easy to use, and its 

algorithm complexity is only O(kmn), however, it is less adaptive to noise. The relaxation algorithm, 

such as FOCUSS (Focal Underdetermined System Solver) [10] and BP (Basis Pursuit) algorithm, is 

computationally larger than the greedy algorithm, but with higher accuracy and more adaptive to noise. 

The iterative threshold algorithm [11] greatly improves the accuracy by iteration, but the number of 

iterations is higher and the convergence rate is late. 

From the compressed sampling method, it can be found that the higher the representation sparsity 

of response surface (the smaller the sparse degree k), the less the nonzero coefficient of response 

surface on the representation basis, the smaller the number of sampling points needed for the response 

surface approximation. The number of calling to the black box function will be less, and the 

optimization efficiency of the product simulation will be higher. Therefore, we propose a constructing 

method of sparse representation response surface model in this paper, which includes sparse response 

surface (SRS) model constructed based on sparse representation theory and quasi-sparse response 

surface (QSRS) model to apply in the case of source model is not strictly sparse on the basis. 

3.  Sparse response surface 

3.1.  The mathematical model 

SRS is based on the polynomial response surface model, which is represented as linear model: 

𝒚̂(𝒙) = ∑ 𝜃𝑖𝜑𝑖(𝒙)𝑝
𝑖=1 .                                                                    (6) 

It also can be written as matrix form 

𝒚̂(𝒙) = 𝜱𝜣,                                                                              (7) 

where 𝒙 = [𝑥1 ⋯ 𝑥𝑚] is the design sampling point, and m is the number of variables. The atoms of 

SRS are constructed with {𝜑𝑖(𝒙)}𝑖=1,2,⋯𝑝 ,and p is the number of atoms. 𝜱 is called dictionary, which 

is a set of basic functions. {𝜃𝑖}𝑖=1,2,⋯𝑝 are the atoms coefficients and 𝜣 is the coefficient vector. We 

select polynomials functions as the basic atoms of SRS, and atoms is tensor product of the whole 

univariate polynomials. The univariate polynomials are decided by the definition of polynomials and 

the index vector. Thus , 𝜑𝑖(𝒙) may be defined as 

𝜑𝑖(𝒙) = 𝐿(𝒙, 𝜼(𝑖)) = ∏ 𝑙𝑗 (𝑥𝑗, 𝜂𝑗
(𝑖)

) , 𝑖 = 1, ⋯ , 𝑝.𝑚
𝑗=1                                 (8) 

where 𝜼(𝑖) = [𝜂1
(𝑖)

, ⋯ , 𝜂𝑚
(𝑖)

]
𝑇

 is the exponent vector of 𝜑𝑖(𝒙) , presented the order of polynomial. 

𝐿(𝒙, 𝜼(𝑖)) is the polynomial of basis, which is calculated through taking variable 𝒙 into the polynomial 

definition and the order number. 𝑙𝑗 (𝑥𝑗, 𝜂𝑗
(𝑖)

) is the 𝜂𝑗
(𝑖)

-order variable polynomial with respect to 𝑥𝑗. 

Given a set of sampling points 𝒙 = [𝑥(1), ⋯ , 𝑥(𝑛)]𝑇 , 𝑥(𝑘) ∈ 𝑅𝑚, 𝑘 = 1,2, ⋯ , 𝑛 , and the 

corresponding actual response 𝒚 = [𝑦(1), ⋯ , 𝑦(𝑛)]𝑇, then the dictionary can be defined as 

𝜱 = [

𝜑1(𝑥(1)) ⋯ 𝜑𝑝(𝑥(1))

⋮ ⋱ ⋮
𝜑1(𝑥(𝑛)) ⋯ 𝜑𝑝(𝑥(𝑛)

].                                                      (9) 

Thus, the model of sparse response surface may be noted as 
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𝒚̂(𝒙) = 𝜱𝜣,     𝑠. 𝑡.  ‖𝜣‖0 ≤ 𝑠.                                                      (10) 

3.2.  Dictionary construction 

Dictionary determined the expression ability of response surface in SRS. In the theory of compression 

sensing, dictionary may be constituted of a set of orthogonal sparse representation basis like Fourier, 

discrete cosine, wavelets etc. A set of Legendre polynomial function is employed as basis in the SRS. 

And the Legendre polynomial is obtained by the circular definition. Assuming that 𝐿0(𝑥) =
1, 𝐿1(𝑥) = 𝑥,, define the following function as 

(𝑛 + 1)𝐿𝑛+1(𝑥) = (2𝑛 + 1)𝐿𝑛(𝑥) − 𝑛𝐿𝑛−1(𝑥), 𝑛 = 1,2, ⋯.                                    (11) 

where the subscript n represents the order of Legendre polynomials. The reason why selected 

Legendre polynomials as basis function is that it can be orthogonal with respect to ℓ2 norm meaning in 

the interval [-1, 1], and this excellent feature may be extended from univariate to multivariate. In 

addition, Legendre polynomial is convenient to be constructed and calculated. 

In addition, the choice of dictionary scale, which determines the numbers of atoms, need to be trade 

off between the dictionary expression ability and the solution stability. If dictionary scale is too small, 

it will be not enough to embody the model characteristics in sampling points and the function 

relationship. Whereas the dictionary is too big, calculating coefficient will be a serious 

underdetermined problem, and solution stability will become poorer. According to the literature [12], 

the number of sampling points n should be at least 15% of the number of atoms p. In this paper, we set 

p = 6n. In the meanwhile, to avoid overfitting and reduce computation, it prefers to select low-order 

function when choosing the Legendre polynomial function to construct atoms To guarantee the total 

order is as small as possible, the atomic structure of multivariate model also obey this criterion. 

The choice of sampling position commands that the sampling may express characterize of source 

model to the greatest extent. In general, sampling points should be uniform distribution on the entire 

design feasible region. Uniform design (UD) and Latin hypercube design (LHD) are meet the demand, 

since both of them can divide design space into n  sampling interval uniformly, and choose one 

sampling points in each interval. The difference is that sampling position of UD is fixed in each 

interval, while sampling position of LHD is random in the corresponding interval. In the SRS, LHD is 

employed for sampling, because the randomness in LHD can shrink off the correlation of atoms in the 

dictionary and facilitate the resolution of atoms expressing different characteristics. 

Due to the definition intervals of Legendre polynomials function is not the same as the design 

space of design model, it is necessary to map sampling points of design space to the definition 

intervals of Legendre polynomials function [-1,1]
m
. Then, calculate value of atoms by taking sampling 

points x into Legendre polynomials function, and dictionary 𝜱 can be constructed. 

3.3.  Construction of sparse response surface 

The sparseness of source model in polynomial basis function is unknown. To build the model of SRS, 

the coefficients of the basis function can be calculated through the following function. 

𝜣 = 𝑚𝑖𝑛‖𝜣‖0 .  𝑠. 𝑡. ‖𝒚 − 𝜱𝜣‖2
2 ≤ 𝜖.                                         (12) 

Due to the object ℓ0 norm is a nonconvex problem, we can relax the sparse object condition to ℓ1 

norm. Eq.(12) is translated to : 

𝜣 = 𝑚𝑖𝑛‖𝜣‖1 .  𝑠. 𝑡. ‖𝒚 − 𝜱𝜣‖2
2 ≤ 𝜖.                                         (13) 

ℓ1 norm is a convex problem, which is the closest to ℓ0 norm, and it’s Lagrange multiplier can be  
𝜣̂(𝜆) = arg min𝜣  ‖𝒚 − 𝜱𝜣‖2

2 + 𝜆‖𝜣‖1.                                     (14) 

Eq.(14) is a famous regression model names least absolute shrinkage and selection operator 

(LASSO), which may provide both variable selection and coefficient shrinkage functions, is 

commonly applied in statistics. Variable selection can be used to generate the model of sparse 

response surface, and coefficient shrinkage can achieve better prediction performance through 

compromising the model training accuracy. The LASSO model can be solved by least angle regression 

(LAR). And author of literature [13] provides a MATLAB toolbox for using to calculate. 

The process of constructing SRS is shown as following Table 1. 
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Table 1. The process of construction sparse response surface. 

Step1: Generate sampling points. LHD method is applied to sampling with the lhsdesign of Latin 

hypercube function in MATLAB. Since the sampling interval of lhsdesign function is [0,1]m, it 

need to be mapped the sampling points towards design space of source model. 

Step2: Estimate objective value. Obtain the objective value y of corresponding sampling points by 

simulating the black box function of source model. 

Step3: Construct dictionary. The sampling points sequence is mapped to Legendre polynomial 

definition interval[-1,1]m. Then obtain index vector {𝜼(𝑖)}
𝑖=1,2,⋯𝑝

, and calculate the value of 

dictionary. 

Step4: Calculate coefficients. Solve Eq. (13) through invoking the LASSO solver solution. 

Step5: The end of construction. 

4.  Quasi-sparsity response surface 

The ability of LASSO to provide sparse models has been demonstrated in the field of statistics, but the 

number of atoms chosen by LASSO cannot exceed the number of rows or columns of the dictionary. 

For the sparse representation of the response surface, if the number of sampling points n is greater than 

the sparse degree k, then LASSO will select k atoms to construct a sparse response surface, which can 

be seen as the precise surrogate model of the source model. However, the source model is complicated 

in real application, its sparse degree based on the selected basis functions may be not small enough, 

and the increase of the sampling points will consume the expensive calculation cost, then the number 

of sampling points is less than sparse degree. Since the model performance is limited in the number of 

atoms selected by LASSO, we consider the Elastic net regression to construct a quasi-sparsity 

response surface model which will be more stable by selecting more atoms. 

4.1.  Definition of QSRS model 

Consider the cost function 

ℒ(𝜆1, 𝜆2, 𝜃) = ‖𝒚 − 𝜱𝜣‖2 + 𝜆1‖𝜣‖1 + 𝜆2‖𝜣‖2
2,                                       (15) 

where 

‖𝜣‖1 = ∑|𝜃𝑗|,

𝑝

𝑗=1

 ‖𝜣‖2
2 = ∑ 𝜃𝑗

2.

𝑝

𝑗=1

 

The Elastic net estimator Θ̂ is the minimize of Eq.(14): 

𝜣̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜣{ℒ(𝜆1, 𝜆2, 𝜃)}.                                                         (16) 

From the Eq.(15), we can see that the elastic net is a regularized regression method that linearly 

combines the ℓ1 and ℓ2 penalties of LASSO regression and ridge regression. 

4.2.  Solution of Elastic net regression 

Theorem. Given data set (y,X) and (λ1, λ2), the elastic net estimation is 

𝜣(𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑛𝑒𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜣 𝜣𝑇 (
𝑿𝑇𝑿+𝜆2𝑰

1+𝜆2
) 𝜣 − 2𝒚𝑇𝑿𝜣 + 𝜆1|𝜣|1.                          (17) 

It is easy to see that 

          𝜣(𝑙𝑎𝑠𝑠𝑜) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜣 𝜣𝑇(𝑿𝑇𝑿)𝜣 − 2𝒚𝑇𝑿𝜣 + 𝜆1|𝜣|1.                                (18) 

 

The proof of theorem is simple, and we omit it here. We can find there is a convenience for elastic 

net that the estimation process can be turned to the LASSO solution from above subsection. We 

introduce a lemma as below. 

 Lemma. Given data set (y, X) and (λ1, λ2), define an artificial data set (y*, X*) by 

𝑿(𝑛+𝑝)×𝑝
∗ = (1 + 𝜆2)−

1

2 (
𝑿

√𝜆2𝑰
) , 𝒚(𝑛+𝑝)

∗ = (
𝒚
𝟎

).                                     (19) 

Let γ = λ1/√(1 + λ2), Θ∗ = √(1 + λ2)Θ. Then LASSO question is equaled with 
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ℒ(γ, 𝜣) = ℒ(γ, 𝜣∗) = |𝒚∗ − 𝑿∗𝜣∗|2 + γ|𝜣∗|1.                                              (20) 

Let Θ∗ = argminΘ∗{ℒ(γ, Θ)}, then 

                       𝜣(𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑛𝑒𝑡) = √1 + 𝜆2𝜣∗.                                                           (21) 

We omit the proof for it is just simple algebra. For the fixed λ2, the elastic net problem can be 

changed to a simple LASSO problem which can be solved by the "LAR-EN" solver. In Ref [14], the 

author gives a "LAR-EN" solver that can directly find Elastic net solutions for fixed λ2. 

4.3.  Construction of QSRS 

There are two main differences between the construction of QSRS and SRS construction: the choice of 

parameter λ2; the sampling mode is changed from LHD sampling to UD sampling. 

In the construction of the QSRS, the parameter  λ2 is determined by the method of cross-validation. 

The specific flow is shown in Table 2. 

Elastic net will select a group of similar atoms, regardless of the correlations between atomics, and 

the sampling points of UD is fixed, then, the response surface is fixed, the reconstruction effect is 

stably. Thus, UD sampling is employed in the constructing of quasi-sparsity response surface. 

Table 2. The process of sparse response surface construction. 

Step1: Generate sampling points by Uniform sampling. 

Step 2: Get the responding value y of the sampling points. 

Step 3: Divide the sampling points into K sets. (K is priority to use 10, or other values that can divide the 

number of sampling points) 

Step 4: Respectively, fix𝜆2to0, 0.0001,0.001,0.01,0.1,1and 10, run steps 5 to 7. 

Step 5: K-1 copies of the sampling points and responding values are taken as the training set, and the 

remaining one is the prediction set. The Quasi-sparse response surface model is constructed by 

using the LAR-EN solver with the training set, the prediction accuracy of the model is evaluated 

on the prediction set. 

Step 6: Repeat step 5 to ensure that each set is used for predicting. 

Step 7: Calculate the mean of the predictor error as the prediction ability of every 𝜆2. 

Step 8: Take  𝜆2with thebest prediction ability. 

Step 9: Construct the QSRS using the LAR-EN solver with the training set and the determined  𝜆2 . 

5.  Numerical experiments 

In order to verify the appreciate effect of SRS and QSRS, 2 simulation test functions and one practical 

engineering design problem are chosen in this section as the object to be reconstructed, and some 

commonly used response surface models are chose as a comparison. 

5.1.  Experiments problems 

1) Test function 1 (10 variables) 

𝑓(𝑥) = ∑ [0.6 + 𝑠𝑖𝑛 (
16∗𝑥𝑖

15
− 1) + 𝑠𝑖𝑛 (

16∗𝑥𝑖

15
− 1)

2
+ 𝑠𝑖𝑛(4 ∗ (

16∗𝑥𝑖

15
− 1))]𝑚

𝑖=1 ,          (22) 

  where 𝑥𝑖 ∈ [−1,1], i=1,2,3,…,m, m=10. 

2) Test function 2 (20 variables) 

𝑓(𝑥) = 1 + ∑ {8 sin2[7(𝑥𝑖 − 0.9)]2 + 6 sin2[14(𝑥𝑖 − 0.9)]2 + (𝑥𝑖 − 0.9)2}𝑚
𝑖=1 ,              (23) 

  where 𝑥𝑖 ∈ [−500,500], i=1,2,3,…,m, m=20. 

3) Engineering design problem 

 Reference [15] provides a few design studies based on finite element analysis and natural experiment 

design of composite sheet structures. The analysis process is complicated in the optimization process. 

The response surface method can provide an approximate model for this kind of problem, save the 

computation time and improve the simulation optimization efficiency. We choose a global deflection 

structure optimization example of a square composite sheet as the validated case of SRRS model. The 

specific description and data of the case can be downloaded from 
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http://www.cs.rtu.lv/jekabsons/datasets.html. The optimization target of this case is decided by six 

variables, and the variable description and range of values are shown in Table 3. 

Table 3.  Variables description of engineering design problem. 

Variable Description Minimum Maximum Units 

L Panel length 3 7 m 

h Panel height 4 16 mm 

t1 Top and bottom plate thickness 2 4 mm 

t1 Core stiffener thickness 1.5 4 mm 

kh Core stiffener spacing factor 1.5 4  

n Symmetrical number of core stiffeners  2 6  

5.2.  Accuracy assessment criteria 

The following metrics are used to assess the generalization capabilities of the response surface models 

compared in this work: 

1) Root mean squared error(RMSE) 

The RMSE is given by  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦(𝑘) − 𝑦̂(𝑘))2𝑛

𝑘=1 .                                                     (24) 

where 𝑦(𝑘) is the actual response and 𝑦̂(𝑘) is the predicted response at the k-th test point, n is the 

number of test points. 

2) Maximum absolute error(MAE) 

The maximum absolute error is given by   

                                                               𝑀𝐴𝐸 = 𝑚𝑎𝑥|𝑦(𝑘) − 𝑦̂(𝑘)|, 𝑘 = 1,2, ⋯ , 𝑛.                                         (25) 

3) Correlation coefficient (R) 

The correlation coefficient between actual response and predicted response is expressed as 

𝑅 =
(∑ (𝑦(𝑘)−𝑦̅)(𝑦̂(𝑘)−𝑦̅̂)𝑛

𝑘=1 )

(√∑ (𝑦(𝑘)−𝑦̅)
2𝑛

𝑘=1
√∑ (𝑦̂(𝑘)−𝑦̅̂)

2𝑛
𝑘=1 )

.                                            (26) 

where 𝑦̅ is the mean of actual response and 𝑦̅̂ is the mean of prediction responses. 

5.3.  Models settings 

SRS and QSRS are compared with the models listed in introduction section including PRS, OK, BK, 

RBF, ERBF, MARS, and SVR. The parameters of these models are listed in Table 4. 

Table 4. The detail settings of different surrogate models. 

Surrogate model Details 

PRS p=2 

OK A constant regression function and a Gaussian correlation model are employed in the 

mode. In all cases, θ0=1m*1, and 0.1≤ θi ≤20, for i = 1, … ,m, where m and 1m*1are the 

number of variables and the vector whose entries are all equal to 1, respectively 

BK The same as OK. 

RBF The form of basis functions is the multi quadric function and we set c = 0.9. 

ERBF The parameter n is set equal to 2 and the parameter c is set to be approximately 1/3 of the 

average domain size. The remaining options are the same as RBF. 

MARS The piecewise-cubic regression functions are adopted in this approach and the stopping 

criterion for the forward phase is set to 1e-4. Additionally, the maximal number of basis 

functions in the forward model building phase is 81 and the Generalized Cross-Validation 

penalty per knot is 3. 

SVR We choose the RBF kernel function which is set with 𝜎 = 4 and the e-insensitive loss 

function. The parameters C, e are selected as 𝐶 =100max(|𝑦 ̅ + 3𝜎 𝑦 |,||𝑦 ̅ − 3𝜎 𝑦 |) and 𝜀  = 

δy/√ns, respectively. Here, 𝑦 ̅ and 𝜎 𝑦  the mean value and the standard deviation of the 

function values at the training points 
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5.4.  Experiment settings 

For all validated objects, the sampling points and test points are generated by LHD in the design 

domain, and the sampling points are used to construct the response surfaces. The test points are used 

to test the model approximation accuracy. To reduce the effect of random sampling on the test results, 

the test is to be repeated 300 or 100 times. The average of the accuracy criteria is used to measure the 

approximation of the response surface model. Detailed can be seen in Table 5. 

Table 5. Numerical setup for test problems. 

Test problem NO. of variables No. of training points No. of test points No. of test times 

Test function 1 10 100 4500 100 

Test function 2 20 120 5000 100 

Engineering problem 6 50 450 300 

5.5.  Experiments analysis and discussion 

5.5.1.  RMSE. Table 6 shows the comparison of the average RMSE results of different response 

surface models. It can be seen that the RMSEs of both SRS and QSRS models are significantly better 

than other common response surface models in this test. From the test results of test function 1, all 

tested response surface models' RMSEs are low. The performance of QSRS is the best, which is 11.6% 

higher than that of SRS. In addition to SRS and QSRS, ERBF and MARS also have a good 

approximation effect. For test function 2, because the number of variables reaches 20 whereas the 

number of sampling points is only 120, so most of the response surface models can not be a good 

object to the reconstruction of the approximation, however, both SRS and QSRS are doing well. For 

the engineering design problem, due to the small number of variables, all the models are doing well, 

SRS and QSRS have the advantage relative to other models. In general, SRRS has a significant 

advantage in approximating RMSE, and this advantage is more pronounced in the case of multi-

variable and less sampling points. In response to SRS and QSRS, the performance of QSRS is better 

than SRS. Because when the parameter 𝜆2 = 0, the QSRS degrades to the SRS, so the QSRS has 

performance that is not weaker than the SRS. However, it must be noted that the construction of the 

QSRS is more expensive than the SRS due to the cross validation process 

Table 6. Mean of RMSEs for different surrogate models, the optimal value in each column is 

shown in bold for ease of comparison. 

Surrogate model Test function 1 Test function 2 Engineering design problem 

PRS 3.4667 9.658e5 0.0065 

OK 2.3096 3.332e5 0.0122 

BK 4.0665 1.786e5 0.0061 

RBF 2.2124 1.711e5 0.0143 

ERBF 1.6026 5.013e3 0.0203 

MARS 1.6193 8.776e4 0.0081 

SVR 2.8475 4.176e5 0.0060 

SRS 1.4967 34.821 0.0041 

QSRS 1.3415 33.826 0.0037 

5.5.2.  MAE. Table7 compared the mean MAE results of all models. It can be seen that the trend of 

MAE is consistent with the trend of RMSE from the results. SRS and QSRS are also better than the 

other response surface models, and the advantage is more obvious in the case of multi-variable and 

less sampling points such as test function 2 which have 20 variables. 
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Table 7. Mean of MAEs for different surrogate models, the optimal value in each column is 

shown in bold for ease of comparison. 

Surrogate model Test function 1 Test function 2 Engineering design problem 

PRS 15.9729 4.231e6 0.0401 

OK 8.3281 1.303e6 0.0834 

BK 18.3734 8.611e5 0.0378 

RBF 8.4164 7.504e5 0.0834 

ERBF 6.9643 1.990e4 0.0963 

MARS 7.4095 3.345e5 0.0537 

SVR 11.7081 1.827e6 0.0478 

SRS 6.2611 146.447 0.0330 

QSRS 6.0611 140.756 0.0313 

5.5.3.  Correlation coefficient. Table 8 shows the comparison of the mean of correlation coefficient 

results for different surrogate models. From the results of test function 1, the performance of the QSRS 

is still the best, the performance of ERBF and MARS are also good. It is worth noting that the 

performance of SRS is not as good as ERBF and MARS, the reason should be the sparse degree of test 

function 1 is greater than the number of sampling points, then the number of selected atoms is too 

small and the response surface is not enough stable. For the test function 2, SRS, QSRS, and MARS 

all behave well, and the mean R of MARS is even higher than the SRS. For the engineering design 

problem, the performance of QSRS and SRS response are in the top two. It can be seen that although 

there are other response surface models may be better than SRRS in the correlation coefficient, but on 

the whole, both SRS and QSRS play a stable and excellent performance. 

Table 8. Mean of Rs for different surrogate models, the optimal value in each column is shown in 

bold for ease of comparison. 

Surrogate model Test function 1 Test function 2 Engineering design problem 

PRS 0.2480 0.3309 0.8838 

OK 0.0179 1.81e-8 0.4748 

BK 0.1864 0.8543 0.8832 

RBF 0.4125 0.9365 0.4667 

ERBF 0.8262 0.9399 0.4260 

MARS 0.8125 0.9633 0.7986 

SVR 0.2454 0.0778 0.8982 

SRS 0.7758 0.9477 0.9491 

QSRS 0.8369 0.9499 0.9621 

6.  Conclusions 

In this paper we proposed a sparse representation response surface include SRS and QSRS based on 

compressed sampling method. The Legendre polynomial function is employed as the sparse basis, the 

SRS and QSRS models are constructed by LASSO or Elastic net regression method and LHD or UD 

sampling. The SRS and QSRS are compared with other commonly used response surface model in the 

numerical experiments of two standard test functions and one practical engineering problem. After the 

accuracy criteria evaluation of RMSE, MAE, and R, the results show that both SRS and QSRS have 

better approximation ability than other commonly used response surface models.  

The conclusions can be given as below: 1)The sparse representation response surface can be used 

to approximate the simulation object, and only a small amount of sampling can obtain effective 

simulation and optimization efficiency, 2)Sparse representation response surface has a better 

approximation effect compared to the other commonly used response surfaces tested in this paper, and 

this advantage is more obviously in the case of multi-variable and less sampling. 
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