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Abstract. The least squares (LS) identification algorithm is vulnerable to outliers and has large 

residual square when the measured data is mixed with impulse noise which obeys symmetrical 

alpha stable (SaS) distribution, so the least absolute deviation (LAD) is selected as the 

objective function to get better identification performance when impulse noise exists. And 

taking the non-difference of least absolute deviation into consideration, we adopt an improved 

gravitational search algorithm as optimal algorithm to search for optimal solution globally. 

Then the parameter identification method based on LAD objective function using an improved 

gravitational search algorithm (LAD-IGSA) is put forward creatively. Simulation results show 

that the LAD-IGSA method can restrain the influence of impulse noise effectively and achieve 

higher identification accuracy. Moreover, LAD-IGSA method presents better robustness and 

bettidentification accuracy than LP method with small data sets. 

1. Introduction 

LS estimation is relatively mature and perfect in theory and methods, which has been widely applied 

to time series system identification, state estimation, functional approximation, and many other 

research fields [1]. LS also has some shortcomings: when measurement noise exists, especially, when 

impulse noise exists, LS shows poorer optimization precision [2]. In order to minimize the sum of 

squares, it’s inevitable to submit to these outliers [3]. The studies show that the LS method has better 

identification effect when the stochastic noise is normally distributed. But the LS recursive method 

may come along with ill-posed solutions because of matrix inversion. Therefore, LAD is selected as 

the objective function to solve the problem of large residual when the measured data is disturbed by 

the impulse noise [4]. However, LAD does not gain enough attention in estimation and research 

compared with LS until Charnes applied LAD to a specific management question that describing the 

deviation with the difference between two nonnegative numbers [5]. This outstanding research laid the 

foundation of LAD. LAD avoids the complexities of matrix inversion and decreases the effect of 

impulse noise interference. Many experiments have proved that LAD demonstrates a strong robustness 

compared with LS [6]. But the LAD criterion function is non-differentiable, so the traditional 

optimization method based on gradient information can not be adopted. So far many effective 

algorithms for optimizing the LAD criterion function had been proposed such as linear programming 

[7], maximum entropy method [8] and intelligent optimization algorithm [9].Intelligent optimization 

algorithm for the model parameters identification is essentially a probabilistic search, which does not 
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require the gradient information of the objective function, and optimizes the objective function without 

requirement of continuity.  

In this paper, the parameter identification based on the least absolute deviation and an improved 

gravitational search algorithm (IGSA) is firstly put forward. Gravitational search algorithm (GSA) is a 

novel meta-heuristic stochastic optimization algorithm inspired by the law of gravity and mass 

interactions [10]. The GSA method has been employed to filter modelling [11] and unit commitment 

of renewable energy sources [12] and slope stability analysis [13]. The course of the parameter 

identification is also to seek the minimum of an objective function. It is important to carry out the 

precise neighbourhood search in the late period of optimization for enhancing the identification 

precision.  

2. The improved algorithm of GSA 

2.1. GSA 

In GSA, considering a system with N agents which are a collection of masses. Each agent is composed 

of four characteristics: position iX , inertial mass iiM , active gravitational mass aiM and passive 

gravitational mass piM , where i represents the thd agent and ),,,,,( 1 n
i

d
iii xxxX  ,,,2,1 Ni  d

ix is the 

thd dimension value of agent i . 

According to Newton’s gravitational force that the force ijF acts on agent i  by agent j at time t is  
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Where is a small constant and )(tG is gravitational constant at time t which is decreased with time 

gradually so as to control the search accuracy. 
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Where 100G , 20 and maxt is the maximum number of iterations. 

Assuming that the total force acting on object i in the thd dimension is 
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Where Kbest means the Kbest  agents with the best fitness value and biggest mass, jrand is a 

random constant in the interval [0,1] as well. With the initial value Kbest=N at the beginning, Kbest is 

a function that decreases with time. Under this circumstance, all agents apply the force mutually at the 

beginning, and with time going on, Kbest is decreased linearly. Eventually, only one object is left to 

apply force to other agents at the end [14]. 

As a result, the acceleration on the basis of Newton Second Law is 
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Gravitational and inertial masses are updated by the following equations: 
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Where )(tfiti represent the fitness value of the agent i  at time t. Then the speed and position of the 

agent i  will be updated as follows in GSA: 
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Where irand is a uniform random variable between 0 and 1. 

2.2. Main improved strategies of IGSA 

2.2.1. Decrease the movement velocity of agents. The next velocity of an agent is considered as a 

fraction of its current velocity added to its acceleration. Then in GSA, the speed and position of the 

agent i will be updated as (6). But the current velocity is so large that the current position is far from 

the next position. Some optimal position may be located between the current position and the next 

position that leads to the local minimum. Therefore, in IGSA the velocity of agents is decreased in 

order to improve the iterative search capability: 
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Where is the number between 0 and 1. 

2.2.2. Orbital change of poor agents’ positions. During the course of GSA searching, all agents 

gradually converge to a small local zone, which results in a low searching efficiency in the late period, 

so orbital change operation should be established in order to jump out of the local minimum. And 

orbital change operation is to enlarge or contract the position of poor agents at a certain probability 

(named Jump rate). ixrands* is called orbital change radius. That is, if agents’ positions converge to a 

smaller value, the orbital change radius will be smaller. The orbital change operation is good for 

jumping out of the local minimum and improving the convergence speed, and not making a big 

disturbance upon the global. 

                                                    iii xrandsxxm  , i=1,2…N                                                       (8) 

Where rands is the random number between -1 and 1. 

2.2.3. Updating optimal agent using trial-and-error method. In IGSA, the optimal object bestx is updated 

using the trial-and-error method. In GSA, all current agents change at each step, if the optimal agent’s fitness 

becomes bad, the next search will begin from a worse position. The optimal position of those historical search 

steps, Lbest, and its fitness Fbest, only play a role for comparison, rather than participate into each step of 

iterative search. In order to utilize the information of those historical search steps Lbest, after one iteration is 

implemented for the optimal agents, the search will continue to the next step in case the fitness turns better. On 

the contrary, the position of optimal object’s position and fitness will be replaced by Lbest and Fbest.  

2.2.4. Further search of optimal agent position. The GSA algorithm generally converges quickly in 

the early 70% iterations, and then the convergence speed becomes slow. In order to further intensify 

the optimal searching ability of the algorithm in the late period, the optimal agent is further optimized 

by coordinate descent method and turns the multivariable optimization problem into some single-

variable sub-problems. 

3. Simulation and analysis for algorithm performance 

3.1. Model description 

Considering the time series as below: 

)()()()()( 11 kvkxzBkyzA  
 

                                                       
211 45.04.11)(   zzzA                                                      (9) 

211 7.0)(   zzzB . 

Where the input sequence )(ku  is white Gaussian noise with variance 12 u . The noise 

sequence )(kv is white Gaussian noise sequence with variance 2.02 u . The objective function can be 



4

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012024 doi:10.1088/1757-899X/435/1/012024

 

 

 

 

 

 

constructed as 




m

k

keJ

1

)()(  , where  )()()( kkyke T . LAD-IGSA is adopted to find the optimal 

solution of the LAD objective function. The evaluation standard in the experiments is the relative error 

 of the parameters estimation.  

The impulse noise in the experiment subjects to SaS distribution, the probability density function of 

the standard SaS distribution is 
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Where )( is gamma function, is characteristics exponent. The less   is, the more probability the 

large amplitude sample of the random variable occurs, and the stronger the pulse strength is [15,16]. 

3.2. Simulation results under different situations 

In order to guarantee the reliability of the simulation results, 100 times repeated independent 

experiments are carried out and the data length is 500L . 

Case 1: measured data with white noise only 

LAD-IGSA method, LAD-IGSA method and LS method are adopted for parameter identification 

separately and the compared results are shown as Table 1, Figure 1 and Figure 2 are the curves of the 

optimal fitness Fbest by LAD-IGSA method and LAD-GSA method. 

Table 1. The identification results  with white noise only 

algorithm a1 a2 b1 b2 ）（%  iterations time (s) 

LAD-IGSA -1.3883 -0.4403 1.0094 0.7001 0.94 60 2.5085 

LAD-GSA -1.4856 -0.5000 1.0314 0.8486 9.18 73 3.3522 

LS -1.4343 -0.4786 1.0097 0.7512 3.59 - 0.4742 

true value -1.4 -0.45 1.0 0.7 0 - - 
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Figure 1. Curve of Fbest by LAD-IGSA 
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Figure 2.  Curve of Fbest by LAD-GSA 

a1, a2, b1, b2 are estimated parameters. Table 1 indicates that the relative error of LAD-IGSA 

method is far less than that of LAD-GSA method and LS method. But LP method runs 0.4742s which 

presents higher estimation speed. Compared with Figure 1, the curve of  Fbest by LAD-GSA in Figure 

2 has several parallel segments. That is to say, the objective function value does not always keep 

falling and falls into local optimal solution. Figure 1 presents that the improved strategies in LAD-

IGSA method can improve the optimization accuracy and estimation speed greatly and ensures that the 

objective function value is optimized in the direction of minimization which contributes to jump out 

local optimal solution.  
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Case 2: measured data with white noise and impulse noise which subjects to SaS distribution 

The measured data are contaminated with both white noise and impulse noise. Let the 

characteristics exponent  of the impulse noise be 1.5, 1.2 and 0.9. Then the measured data are 

estimated by LAD-IGSA method, LAD-GSA method and LS method. The parameter identification 

results and the optimal fitness Fbest of LAD-IGSA and LAD-GSA are shown in Table 2. 

Table 2. The identification results when 5.1  

algorithm a1 a2 b1 b2 ）（%  iterations time (s) 

LAD-IGSA -1.3987 -0.4442 1.0041 0.6998 0.87 50 2.2535 

LAD-GSA -1.2957 -0.3711 1.0077 0.5641 9.83 98 4.8557 

LS -1.3656 -0.4272 0.9888 0.6607 3.04 - 0.0352 

true value -1.4 -0.45 1.0 0.7 0 - - 

Table 3. The identification results when 2.1  

algorithm a1 a2 b1 b2 ）（%  iterations time (s) 

LAD-IGSA -1.3976 -0.4486 1.0007 0.7186 0.67 40 1.9011 

LAD-GSA -1.2930 -0.3482 1.0049 0.5890 9.90 115 5.2288 

LS -1.4005 -0.4503 1.1630 0.8056 10.16 - 0.0351 

true value -1.4 -0.45 1.0 0.7 0 - - 

Table 4. The identification results when 9.0  

algorithm a1 a2 b1 b2 ）（%  iterations time (s) 

LAD-IGSA -1.3881 -0.4385 0.9975 0.7088 0.98 77 4.4196 

LAD-GSA -1.3265 -0.3783 1.0579 0.5497 9.97 116 11.4576 

LS -1.3960 -0.4434 0.5287 0.7966 25.17 - 0.0355 

true value -1.4 -0.45 1.0 0.7 0 - - 

From Table 2 ~ 4, the relative errors of the LAD-IGSA method are less than 1% which is much 

better than LAD-GSA method and LS method. With the characteristics exponent decreasing, the 

identification accuracy of LAD-IGSA method and LS method become worse. The relative error of LS 

method changes greatly and the identification accuracy is unstable. LS method even can not identify 

the parameters successfully when 9.0 . But LAD-IGSA method maintains high precision and the 

relative error converges to a small value under the interference of impulse with different intensities. So 

it can be summarized that LAD-IGSA method overcomes the impact of impulse noise successfully.  

Case 3: The influence of length of the sample data on identification accuracy 

We carry on simulation tests with LP method and LAD-IGSA method in the context of the 

measured data which are of different length. The compared results under different circumstances are as 

following in Table 5 ~Table 8. 

Table 5. The identification results when L=10 

algorithm a1 a2 b1 b2 ）（%  iterations time (s) 

LAD-IGSA -1.4077 -0.4433 1.1094 0.6726 5.92 10 0.1439 

LP -1.0432 -0.2391 0.9688 0.3179 29.54 - 0.1724 

true value -1.4 -0.45 1.0 0.7 0 - - 

Table 6. The identification results when L=50 

algorithm a1 a2 b1 b2 ）（%  iterations time (s) 

LAD-IGSA -1.3340 -0.3678 0.9944 0.7048 5.53 17 0.2756 

LP -1.5751 -0.6168 1.0343 0.9341 17.7 - 0.1717 

true value -1.4 -0.45 1.0 0.7 0 - - 
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Table 7. The identification results when L=100 

algorithm a1 a2 b1 b2 ）（%  iterations time (s) 

LAD-IGSA -1.3824 -0.4399 1.0506 0.6961 2.86 67 1.1820 

LP -1.5918 -0.6133 1.0378 0.9187 17.57 - 0.1862 

true value -1.4 -0.45 1.0 0.7 0 - - 

Table 8. The identification results when L=300 

algorithm a1 a2 b1 b2 ）（%  iterations time (s) 

LAD-IGSA -1.3834 -0.4273 1.0159 0.6879 1.81 42 1.2637 

LP -1.4890 -0.5176 1.0201 0.8129 8.38 - 0.2659 

true value -1.4 -0.45 1.0 0.7 0 - - 

Table 5. shows that the identification accuracy of LAD-IGSA method still can get an acceptable 

identification result and is higher than that of the LP method with L=10. The accuracy of the LP 

method indicates that LP can not successfully identify the estimation parameter effectively. From 

Table 6. and Table 7., we can conclude that the accuracy of LP method is improved with the length of 

sample data increasing such as L=50 and L=100, but the relative error is still unaccepted. On the 

contrary, the relative error of LAD-IGSA method is still maintained at 5% or less. Table 8 shows that 

the LP method can identify the parameters effectively when L=300. Obviously, LAD-IGSA method 

can identify the parameters effectively when the sample data is insufficient or the length is small. 

LAD-IGSA method shows better robustness than LP method in this situation. 

4.  Conclusions 

In this paper, we firstly expand the application of the LAD based on an improved gravitational search 

algorithm to the field of time series system identification. The improved strategies in LAD-IGSA 

enhance the optimization capabilities and decrease the convergence time. LAD-IGSA method can 

inhibit the influence of impulse noise which obeys SS  distribution on the identification results and 

improve the robustness to a great extent due to the application of the LAD criterion. The improved 

gravitational search algorithm contributes to get a better optimization results when the length of 

measured data is small, which make the available of identification of time series system when the 

measured dada are not sufficient. The proposed algorithm is carried out easily and should be very 

valuable for those applications such as identification of complex chemical process. 
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