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Abstract. To address the tendency of the particle swarm optimization algorithm to fall into local 

minima as well as to speed up its final stages of convergence, this paper proposes a combination 

of several improvements to the algorithm. First, the convergence factor is introduced as a special 

case of the inertia weight and transboundary particles are reset. Second, to increase the diversity 

of the particles and break the stagnation states of the particle swarm, a random number is 

introduced into the speed and position of the particles. The variation of the particles’ position and 

velocity is hence optimized, and the search space for the optimal value is expanded. We use the 

single-mode sphere and Rosenbrock functions as well as the multimodal Rastrigrin and Griewank 

functions to verify the algorithm. The maximum, mean, variance, stability, and convergence 

accuracy of the proposed algorithm are improved. 

1. Introduction 
The particle swarm optimization (PSO) algorithm is a type of bionic intelligence optimization algorithm 

proposed by Kennedy and Eberhart [1]. It is based on the idea of iterative search for an optimal value 

and solves the optimization problem by simulating a group of foraging activities and individual foraging 

action laws. In the foraging behavior of birds, although the target is not clear, each bird knows how far 

it is away from a target, so the best foraging program is to fly to the food closest to the location of the 

bird. This is why flying birds will suddenly synchronize their direction of change or aggregation or, 

alternatively, scatter. In the PSO algorithm, each bird is abstracted as a random search particle, and the 

distance to the target is measured by the fitness function. Each particle corresponding to a solution of 

the optimization problem is solved in the d-dimensional search space, and there is a speed vector and 

position vector that determine the search direction and distance in the search space of each particle. 

There is also a fitness value based on the objective function. Each particle knows the best position and 

current position it has experienced so far. This represents the flight experience accumulated by the 

particle itself. Moreover, each particle also knows the best position experienced by all the particles in 

the current population, which is called the accumulated flight experience of the population. Using these 

two pieces of information, the particles continually update their own speed and position. 

Simultaneously, the global best position and fitness of the local particle and global population are 

constantly changing until the condition for terminating the iterations is met. The optimal solution is the 

final global optimal position. 
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This method records the particle's position vector 
1, 2,( , )i i i idX x x x   and speed vector 

1, 2,( , )i i i idV v v v  . The individual extrema of the particles 
1, 2,( , )i i i idP p p p  and the global extrema of 

the population 
1, 2,( , )g g g gdP p p p  are also recorded, where I = 1, 2, …, m. A population composed of m 

particles searches in d-dimensional space. For the (t + 1)th iteration, the particles update the particle position 

and velocity using the following equation. 
1

1 1 2 2

1 1

c ( ) c ( )t t t t t t

ik ik ik ik gk ik

t t t

ik ik ik

v v r p x r p x

x x v



 

    

 
                (1) 

Here, c1 and c2 are the learning factors, where generally c1 = c2 = 2. In addition, r1 and r2 are used 

to increase the particle flight randomness. In Equation (1), the first term is the speed of the last iteration 

of the particle, followed by the term that specifies the effect of the best position of the particle on the 

next iteration, which comes from the flight experience of the particle itself. Finally, the last term is the 

social experience, which indicates the effect of the global extreme point on the current particle position, 

that is, the experience of all the particles benefits the search process of the particle. In each dimension, 

the velocity and position of the particles are limited to avoid searching beyond the scope of the search, 

for example, if the particle speed is too high, it could fly out of the range of the optimal solution, and if 

the speed is too low, it could perform an invalid or partially optimal search. 

Kennedy and Eberhart proposed PSO in 1995. PSO uses a set of particles that represent potential 

solutions to an optimization problem. The particle moves toward an optimal solution based on its 

present velocity and the individual best position. It has found in previous iterations while also 

incorporating the globally best solution found by its companion particles [2]. To gain deeper insight into 

the mechanism of PSO, many theoretical analyses have been conducted on the algorithm, and most of 

these studies have focused on the behavior of a single particle in PSO, analyzing the particle’s trajectory 

or stability using deterministic or stochastic methods [3–8]. To view PSO from a new perspective, we 

constructed a relationship between the dynamic PSO process and the transition process of a control 

system to identify factors that influence the convergence speed and stability of the basic PSO without 

increasing the algorithm’s complexity [3]. In recent years, PSO has captured a great deal of attention 

and has been successfully applied in many applications because of its simplicity of implementation 

[9-12]. However, many experiments have indicated that the canonical PSO suffers from premature 

convergence when solving complex problems [13-14]. For this reason, a number of methods have been 

proposed to improve the efficiency and/or effectiveness of the PSO algorithm through adjustments to 

the code pattern, inertia weight, and maximum speed of the particles, mutation operators, neighborhood 

operations, and boundary conditions
 
[15-18]. Some of the studies used hybrid (mixture and parallel) 

algorithms, for instance PSO with immune algorithms, simulated annealing algorithms, and chaos 

algorithms, to improve search effectiveness [19-21]. 

Overall, PSO algorithm research includes the following main aspects. For theoretical research, PSO 

convergence theory mainly focuses on a simplified PSO system. The convergence of the PSO can be 

analyzed using dynamic system stability theory to obtain some convergence conditions [22–25] by 

dynamically expressing the behavior of the particles as a nonlinear feedback control system. 

Furthermore, it obtains a statistical law of the PSO when approaching an attraction center [26]. To solve 

dynamic optimization problems, a PSO with a dynamic and hierarchical domain structure has been used, 

and it was proven that this structure can help keep the particles dispersed in a dynamic environment 

[24]. 

Using the above techniques, when an initial random solution is used such that the iterations of the 

particle position bring it close to the optimal solution, which is easy to implement, the algorithm 

converges faster. Furthermore, there are no complicated crossover and mutation operations as in a 

genetic algorithm [27]. However, it is also easy for a PSO to fall into a local extremum [28] and the final 
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phase of the convergence is slow, among other problems [29]. To address these shortcomings, this paper 

presents three improvements to the PSO algorithm as described in detail in the next section. 

2. Improvement Strategies for PSO 

2.1 Convergence factor 

Shi [30] proposed the inertia weight method to guarantee the convergence of the PSO algorithm and 

changed the speed update formula. This equation is now regarded as the standard PSO model, and is 

calculated as follows. 

                       
1

1 1 2 2c ( ) c ( )t t t t t t

ik ik ik ik gk ikv wv r p x r p x                 (2) 

In Equation (2), w is the inertia weight, and its value reflects the effect of the historical state of the 

particle on the current state during particle iteration. The algorithm is optimized using fixed or linearly 

decreasing inertia weights. Usually, weights in the range [0.1, 0.9] obtain better convergence 

performance. When the value is greater than 1.2, the particle group will not converge
 
[31]. 

To improve the convergence speed and performance of the PSO algorithm, Clerc [32] added a 

convergence factor, as follows.  
1

1 1 2 2[ c ( ) c ( )]t t t t t t

ik ik ik ik gk ikv v r p x r p x                      (3) 

Here, 
2

2

2 4


  


  
is the convergence factor, where 1 2 4c c    ,  is usually set to 

4.1, giving a convergence factor of 0.7298. The convergence factor can be regarded as a special case of 

the inertia weight. In this paper, the convergence factor is used to optimize PSO. 

2.2 Handling transboundary particles.  

During particle parameter optimization, if a particle’s parameters exceed the range of allowable values, 

they are usually reset. The usual approach is to set the velocity and position of the transboundary 

particle parameters to the boundary values. That is, when the particle speed exceeds the upper bound, 

i.e., ,maxik kv v , it is set to the maximum speed 
,max=ik kv v , and when the velocity of the particle is 

below the lower bound, i.e., 
,minik kv v , it is set to the minimum speed, 

,minik kv v . The position of a 

particle beyond the border of the solution space is treated similarly. This method was suggested by Fu 

[33]. If there is a locally optimal solution in the vicinity of the boundary value, it will cause a large 

number of particles to move closer to the boundary value to form a particle aggregation, which may 

cause the particle group to fall into a locally optimal extremum and result in a combination of 

parameters that are not optimal. 

Hence, this paper proposes an improved way to set the speed and location of transboundary particles. 

When ,maxik kv v , the velocity of the particle is combined with a random number, 

,max ,max ,min( ) rand()ik k k kv v v v    . When the velocity of the particle is below the minimum boundary 

value, ,minik kv v , it is changed using 
,min ,max ,min( ) rand()ik k k kv v v v    . Using the same improvement 

strategy, the position of transboundary particles is also treated with random values; that is, when the 

particle position exceeds the highest boundary value, i.e.,  
,maxik kx x , the location of the particles is 

corrected as ,max ,max ,min( ) rand()ik k k kx x x x    . Likewise, when ,minik kx x , the position of the 

particle is corrected using 
,min ,max ,min( ) rand()ik k k kx x x x    . The rand() function generates a random 

value in [0, 1]. 

2.3 Adaptive particle mutation. 
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In the PSO algorithm, the position of the particle is determined by both the optimal merits of the particle 

itself and the optimal merits of the particles in the whole population. Hence, if there is a particle in the 

population that is close to the optimal solution, the other particles in the population will move rapidly in 

the direction of this particle. If there is no better position than the current global extremum, the 

algorithm is more likely to fall into a search for a locally optimal solution, which may lead to the 

convergence of the algorithm. Most of the particles are clustered into one place, so there is no way for 

particles to search the space again. Hence, because the final stage of the convergence is too slow, the 

lack of particle diversity caused by premature convergence, and other shortcomings, the diversity of the 

particles should be increased to break the stagnation of particle groups. It is possible to consider 

increasing the position or velocity of the particles so that the particle swarm can continue to find the 

optimal value, which strengthens the convergence speed and accuracy of the particle group. Because the 

key to avoiding locally optimal solutions is to use the optimal position experienced by each individual 

particle, this paper introduces an adaptive mutation based on the best position experienced by the 

particle itself. 

Consider the example of looking for a minimum value. After the k-th search is performed, using 

1

1
( ) ( )

n

avg i

i

f k f k
n 

  , we can obtain the average and variance of the particle fitness of the particle group: 

                                                                 

                                  (4) 

Here, f is a normalization factor that controls the population fitness variance of the data range. When 

the variance of the overall fitness of the particle group is small, the particle group will be more closely 

aggregated. If the algorithm begins to prematurely converge, to reduce the possibility of local 

convergence of the current particles, this paper proposes randomly selecting a dimension for the 

position mutation operation according to a certain probability. This probability is the probability of 

occurrence of particle variation, which is related to the variance of the population fitness. 
2

max max min= ( )P P P P
N


                                       (5) 

                                (6) 

In each iteration, a random number r is generated, and if it is smaller than the probability P of the 

mutation operation, the position of the particle can be updated, and the dimension of the particle 

position is arbitrarily selected. 

When the variance of the overall fitness of the particle group is large, the diversity of the current 

particle swarm is relatively high and it is still in a state of random search. Here, it is not necessary to 

increase the diversity of the particle swarm. The probability of mutation should also be relatively small. 

When the variance of the population fitness is small, the current particle group is relatively dense, and 

the states of the particles need to be more diverse. Therefore, according to Equation (5), P is large and 

indicating that mutation of the particles is more likely. Hence, this method of calculating the mutation 

probability increases the diversity of particles when the algorithm begins to converge. 

2.4 Pseudo Code of the Improved PSO Algorithm. 

In this paper, the PSO algorithm is improved by introducing the convergence factor, combining it with 

the random reset for the velocity and position of transboundary particles, and adding particle position 

mutation to increase the diversity of the particle swarm. The pseudo code of the algorithm after these 

improvements is as follows. 
Begin 

 %Initial population 



5

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012028 doi:10.1088/1757-899X/435/1/012028

 

 For i = 1 to N 

    For d = 1 to Dimension D 

Randomly initialize the population and speed 

  End 

Calculate the initial fitness value fitness (i) 

 End 

 % Find individual extremes and global extremes 

 [global_fit bestindex] = min(fitness) 

 Indiv_fit = fitness 

 % Iterative optimization 

 For i = 1 to MaxIter 

  For j = 1 to N 

   For d = 1 to Dimension D 

    Vj = w*Vj + c1*rand*(indiv_xj − xj) + c2*rand*(global_x − xj)  % Update Speed 

   if Vj > Vmax then 

            Vj = Vmax − (Vmax − Vmin)*rand    % Cross speed processing 

         end if 

      if Vj < Vmin then 

            Vj  = Vmin + (Vmax − Vmin)*rand 

        end if 

  Xj = Xj + Vj   % Update location 

  if  Xj > Xmax then 

             Xj = Xmax − (Xmax − Xmin)*rand  %Transboundary position processing 

      end if 

      if  Xj < Xmin then 

             Xj = Xmin + (Xmax − Xmin)*rand 

        end if 

  End 

  if rand < p 

   k = ceil(D*rand) 

   Xj, k = Xk, min + (Xk, max − Xk, min)*rand  % Particle position mutation operation 

  end if 

  update fitness(j), global_fit, indiv_fit(j) 

  End 

  For k = 1 to N 

   f(k) = abs(fitness(k) − avgfit_gen(i)) % Fitness variance 

  End 

  For k = 1 to N 

   sigma(k) = (fitness(k) − avgfit (i))/fmax; 

  End 

  square = sum(sigma^2) 

  p = pmax − (pmax − pmin)*square/N % Mutation probability 

 End 

End 

3. Experimental analysis 

3.1 Standard test functions.  

To verify whether the improved PSO algorithm proposed in this paper improves its performance, four 

benchmark functions widely used to evaluate the performance of the PSO algorithm are used. The four 

benchmark functions are divided into two categories: single-mode functions and multimodal functions. 

That is, they are divided by their number of extrema. Each category contains two test functions. 

A. Single-mode functions 
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The sphere function is a simple single-peak continuous function, usually used to detect the optimization 

accuracy of an algorithm. Its value is (0, ..., 0) at the globally optimal solution, and its three-dimensional 

map shown in Figure 1. The function is expressed as formula(7). 

      
2

1

1

n

i

i

f x


                       (7)      2 2

2 1

1

100( ) (1 )
n

i i i

i

f x x x



           (8) 

 
Figure 1 Sphere function 

 
Figure 2 Rosenbrock function 

The Rosenbrock function is a nonconvex function with a globally optimal solution at (1, ..., 1). Its 

three-dimensional graph is a parabolic valley, as shown in Figure 2, and the function is expressed as 

formula(8) . 

B. Multimodal functions 

The Rastrigrin function is a multi-peak function of sinusoidal ripple. There is a globally optimal 

solution at (0, ..., 0). To see the position of its global optimal solution, we present the three-dimensional 

graph of the negative of the function in Figure 3. There are several local extrema in the range (−5.12, 

5.12), the number of which is related to the dimension, and the function expression is as formula(9), 

where the two coefficients are 10 here, but can be other values. 

2

3 1

1

( 10cos(2 ) 10)
n

i i

i

f x x



                 (9)        2

4 1

1 1

1
cos( ) 1

4000

nn
i

i

i i

x
f x

i


 

               (10) 

 
Figure 3 Rastrigrin function 

 
Figure 4 Griewank function 

 

The Griewank function is a typical nonlinear multi-peak function, and it has many local extrema. 

Their number is related to the dimension of the search space, and the globally optimal solution is 

obtained at (0, ..., 0). We show the three-dimensional graph of the negative function in Figure 4. The 

function is expressed as formula(10). 
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The search ranges of the four test functions are shown in Table 1, and the search space dimension is 

10 for all functions. 
Table 1 Search range of the benchmark functions 

functions range optimum optimum points 

Sphere (-100, 100) 0 (0, …, 0) 

Rosenbrock (-30, 30) 0 (1, …, 1) 

Rastrigrin (-5.12, 5.12) 0 (0, …, 0) 

Griewank (-300, 300) 0 (0, …, 0) 

3.2 Results  

The performance of the improved PSO algorithm is compared with those of the standard PSO, 

LDWPSO [34] and CLSPSO [35] algorithms on the four benchmark functions. Table 2 shows the 

parameters of each algorithm in this experiment. 
Table 2 Parameter settings for each algorithm 

algorithms w c1 c2 Population size 

PSO 0.9 2 2 20 

LDWPSO [0.5, 0.9] 2 2 20 

CLSPSO 0.9 1.496 1.496 20 

Proposed 

algorithm 

0.729 1.496 1.496 20 

The four algorithms were run 10 times on each benchmark function and the maximum number of 

iterations was 1,000. The minimum, maximum, mean, and variance of each PSO algorithm are shown in 

Table 3. Figures 5–Figures 8 shows the convergence of the four algorithms in different benchmark 

functions. 
Table 3 Comparison of each PSO algorithm on the benchmark functions 

functions algorithms min max average variance 

Sphere 

PSO 3.57316E-05 0.995077471 0.17262312 0.096997182 

LinWPSO 1.13012E-07 2.622217715 0.294078248 0.675193305 

CLSPSO 0 183313.1499 18331.31499 3360371093 

Proposed 

algorithm 
0.001006009 0.004771275 0.002622363 1.29E-06 

Rosenbrock 

PSO 8.612494913 336.0685119 81.45418547 10114.34847 

LinWPSO 9.444753583 1273.833536 201.2536662 152751.5962 

CLSPSO 0 1.46577E+11 14657663272 2.14847E+21 

Proposed 

algorithm 
8.743861127 81.93926906 21.21815365 6.61E+02 

Rastrigrin 

PSO 7.825758006 32.72522317 16.58103419 49.48017738 

LinWPSO 11.94200845 29.85006006 18.41880806 34.80968821 

CLSPSO 0 113737.0288 11373.70288 1293611172 

Proposed 

algorithm 
5.97915844 20.90221235 10.75755236 28.78808246 

Griewank 

PSO 0.054095474 0.175401891 0.110346599 0.00241495 

LinWPSO 0.118265615 1.552401333 0.781081812 0.259327117 

CLSPSO 0 42.40817951 4.240817951 179.8453689 

Proposed 

algorithm 
0.029118976 0.363126298 0.187540239 0.008228349 



8

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012028 doi:10.1088/1757-899X/435/1/012028

 

0 100 200 300 400 500 600 700 800 900 1000
10

-2

10
0

10
2

10
4

10
6

进化次数

适
应
度
值

Sphere

 

 

PSO

LinWPSO

CLSPSO

this paper

 
Figure 5 Sphere function results 
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Figure 6 Rosenbrock function results 
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Figure 7 Rastrigrin function results 
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Figure 8 Griewank function results 

The results show that the improved PSO algorithm has better local search ability than the other PSO 

algorithms. Later increases in the diversity of particles to boost the algorithm out of a local search 

obtains a better convergence. For the sphere function, the proposed algorithm has better stability than 

the other algorithms with respect to mean and variance, and the convergence precision of the algorithm 

is better than those of the other algorithms. The complicated Rosenbrock function optimization problem 

provides more detailed information. Each algorithm has large differences in the single-experiment 

results, but the proposed algorithm still has better stability and convergence accuracy. For the 

multimode Rastrigrin and Rosenbrock functions, several obvious inflection points can be seen in 

Figures-8, which is the embodiment of the particle self-mutation. A comparison of the experimental 

data obtained on the four test functions shows that the algorithm proposed in this paper performed better 

with respect to the maximum, mean, and variance than the other three algorithms. 

4. Conclusions 

In PSO, the individual particles make full use of their own experience and the group’s experience to 

adjust their own state to obtain the optimal solution. However, it has the problem of premature 

convergence (especially when dealing with complicated, multi-extrema search problems) and poor 

global optimization ability. In this paper, we increased the convergence factor and used a random 

number with the velocity and position to reset transboundary particles. To avoid becoming trapped in a 

locally optimal solution, that is, the optimal position of an individual, the particle’s location was 

modified by adaptive mutation to increase the diversity of the particles in a group. The improved 

algorithm was compared with the standard PSO, LDWPSO, and CLSPSO algorithms, and the maximum, 

minimum, mean, and variance are improved on standard single-mode and multimodal test functions. 

The performance results prove the effectiveness of the improved PSO algorithm. 



9

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012028 doi:10.1088/1757-899X/435/1/012028

 

Acknowledgments 

This work was supported by the National Science and Technology Major Project of China (Grant No. 

2017YFC1404602). 

References 
[1]

 
Kennedy J, Eberhart R C. (1995)Particle swarm optimization[C]. In Proc. of IEEE conference on 

neural networks. 1942-1948. 

[2] Zhang W, Liu J, Fan L B, Liu Y H, Ma D. (2016) Control strategy PSO[J]. Applied Soft 

Computing, 38(C):75-86. 

[3] Clerc M., Kennedy J., (2002) The particle swarm-explosion, stability, and convergence in a 

multidimensional complex space [J], IEEE Trans. Evolut. Comput. 6(1): 58-73. 

[4] Kadirkamanathan V., Selvarajah K., Fleming P.J. (2006) Stability analysis of the particle 

dynamics in particle swarm optimizer [J], IEEE Trans. Evolut. Comput. 10(3):245-255. 

[5] Eberhart R.C., Shi Y. (2000) Comparing intertia weights and constriction factors in particle 

swarm optimization [C]. in: Proceedings of the Congress on Evolutionary Computation, 

1(5):84-88. 

[6] Trelea I.C. (2003) The particle swarm optimization algorithm: convergence analysis and 

parameter selection [J], Inf. Process. Lett. 85(6): 317-325. 

[7] Jiang M., Luo Y., Yang S. (2007) Particle Swarm Optimization-Stochastic Trajectory Analysis 

and Parameter Selection., I-TECH Education and Publishing.  

[8] Jiang M., Luo Y.P., Yang S.Y. (2007) Stochastic convergence analysis and parameter selection 

of the standard particle swarm optimization algorithm [J], Inf. Process.Lett. 102 (1): 8-16. 

[9] Ciuprina G, Ioan D, Munteanu I. (2002) Use of intelligent-particle swarm optimization in 

electromagnetics [J], IEEE Trans. Magn. 38(2): 1037-1040. 

[10] Ling S.H, Iu H.H.C, Chan K.Y. (2008) Hybrid particle swarm optimization with wavelet 

mutation and its industrial applications [J], IEEE Trans. Syst. Man Cybern. Part B: Cybern., 

38(3): 743-763 . 

[11] Soh H., Y.S., Q.C. Nguyen, Nguyen Q.H., (2010) Discovering unique, low-energy pure water 

isomers: meme Ong tic exploration, optimization and landscape analysis [J], IEEE Trans. Evol. 

Comput., 14(3): 419-437. 

[12] Wachowiak M.P., Smolikova R, Zheng Y.F, (2004) An approach to multimodal biomedical 

image registration utilizing particle swarm optimization [J], IEEE Trans. Evol. Comput. 8(3): 

280-288. 

[13] Zhan Z.H., Zhang J., L i Y., (2009) Adaptive particle swarm optimization [J], IEEE Trans. Syst. 

Man Cybern. Part B: Cybern. 39(6): 1362-1381. 

[14] Xia X W, Xie C W, Wei B, et al. (2017) Particle swarm optimization using multi-level adaptation 

and purposeful detection operators [J], Information Sciences, 385-386:174–195. 

[15] Feng Y.M., Li C.J., Zhang M., (2008) Research on the function of reservoir long term operation 

based on improved particle swarm optimization (IPSO)[J], Water Power. 34(2): 94–97. 

[16] Li G.Y. (2006) Regulation of water and sediment for the Yellow River based on joint operation of 

reservoirs and artificial intervention [J], Journal of Hydraulic Engineering, 37(12):1439-1446. 

[17] Marler R.T., Arora J.S. (2004) Survey of multi-objective optimization methods for engineering 

[J], Structural & Multidisciplinary Optimization, 26(6):369-395. 

[18] Massimiliano K., (2013) A multi-start opposition-based particle swarm optimization algorithm 

with adaptive velocity for bound constrained global optimization [J], Journal of Global 

Optimization, 55(1):165-188. 

[19] Wang Y., Zhou J.Z., Zhou C., et al, (2012) An improved self-adaptive PSO technique for 

short-term hydrothermal scheduling [J], Expert Systems with Applications, 39(3):2288-2295. 

[20] Yin X.A., Yang Z.F., Yang W., et al. (2010) Optimized reservoir operation to balance human and 

riverine ecosystem needs: model development, and a case study for the Tanghe reservoir, Tang 



10

1234567890‘’“”

AIAAT 2018 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 435 (2018) 012028 doi:10.1088/1757-899X/435/1/012028

 

river basin, China [J], Hydrological Processes, 24(4):461-471. 

[21] Yu X.B., Cao J., Shan H.Y., et al, (2014) An adaptive hybrid algorithm based on particle swarm 

optimization and differential evolution for global optimization [J], The Scientific World Journal. 

(6): 25-40. 

[22] Trelea I C. (2003) The particle swarm optimization algorithm: convergence analysis and 

parameter selection[J]. Information processing letters, Elsevier, 85(6): 317-325. 

[23] Van Den Bergh F. (2002) Analysis of Particle Swarm Optimizers [D], Doctoral Dissertation, 

Department of Computer Science, University of Pretoria, Pretoria, South Africa. 

[24] Van Den Bergh F, Engelbrecht A P. (2006) A study of particle swarm optimization on particle 

trajectories[J]. Information Sciences, 176(8): 937-971. 

[25] Kadirkamanathan V, Selvarajah R, Fleming P. (2006) Stability analysis of the particle dynamics 

in particle swarm optimizer [J]. IEEE Transactions on Evolutionary Computation, 10(3): 

245-255. 

[26] Poli R. (2009) Mean and Variance of the Sampling Distribution of Particle Swarm Optimizers 

During Stagnation [J]. IEEE Transactions on Evolutionary Computation, 13(4): 712-721. 

[27]  Zhang J B, Wang X L. (2010) A Novel Algorithm Based on K-Means Clustering and Binary 

Particle Swarm Optimization [J]. COMPUTER TECHNOLOGY AND DEVELOPMENT, 

20(6):25-28. 

[28]  Jiang T, Zhang Y F, Wang Y H. (2006) A Study of Application of an Improved PSO Algorithm in 

BP Network [J]. COMPUTER SCIENCE, 33(9):164-165. 

[29]  Yu H S. (2015) Research of adaptive mutation of Particle Swarm Optimization [D]. Master 

Dissertation, Department of Applied Mathematics, Nanjing University of Information Science & 

Technology, Nanjing, China. 

[30] Shi Y E, Berhart R C. (1998) A Modified Particle Swarms Optimizer [C]. in Proc of IEEE 

Congress on Evolutionary Computation. 6:69-73. 

[31]
 
 Sun X, Zhou D W, Zhang X W. (2010) Convergence analysis and parameter selection of PSO 

model with inertia weight [J]. COMPUTER ENGINEERING AND DESIGN, 31(18):4068-4071. 

[32]
 
 Clerc M. (1999) The Swarm and the Queen: Towards a Deterministic and Adaptive Particle 

Swarm Optimization [C], in Proc of the Congress on Evolutionary Computation, III: 1951-1957. 

[33]  Fu G J, Wang S M, Liu S Y, et al. (2005) A PSO with Bounded Mutation Operator [J]. JOURNAL 

OF WUHAN UNIVERSITY OF TECHNOLOGY, 27(9): 101-103. 

[34]  Lin W M, Zhou N N. (2014) A Particle Swarm Optimization Algorithm of Linear Decreasing [J]. 

Computer Technology and Development, 24(10):67-70. 

[35] Meng F, Pan P P. (2011) Neural Network Trained by Hybrid Algorithms Based on Chaos Particle 

Swarm Optimization and Back-Propagation Algorithm [J]. COMPUTER SIMULATION, 

28(2):196-199. 

 


