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Abstract. Echo state network (ESN), a novel recurrent neural network, has a randomly and 

sparsely connected reservoir. Since the output weights are computed by Moore-Penrose inverse, 

the ill-posed problem may exist in the ESN. To overcome this problem, ridge regression echo 

state network (RESN) is proposed, in which the ridge regression algorithm is used to calculate 

the output weights instead of linear regression. Simulation results show that the RESN has 

better performance than some other existing methods, thus can deal with the ill-posed problem. 

1. Introduction 

Water quality prediction in the wastewater treatment process (WWTP) can provide strong support for 

water treatment plant management decisions [1-2]. However, it is very difficult to predict the water 

quality, since WWTP is a complex system including a variety of physical and biochemical reactions. 

Moreover, due to the nonlinear characteristics, delay-time and uncertainty, it is difficult to measure 

effluent qualities parameters in the WWTP. The quality of treated wastewater is measured by some 

parameters, such as biochemical oxygen demand (BOD), total phosphorous (TP), ammonia nitrogen 

(NH4-N), and so on, which must meet the national standard. The traditional measurement approaches 

usually depend on the laboratory analysis which takes a long time [3-4]. For example, it takes about 

five days to get BOD values according to the conventional chemical measurement approaches, which 

cannot have a real time monitoring process of the water pollution situation. This lack of real- time 

process variable information limits the effective operation of effluent water quality prediction. 

Furthermore, the online monitoring instrument needs high economic costs and is difficult to be 

conducted in the WWTP. Therefore, water quality prediction model is essential to support water 

quality parameters. 

To solve the above-mentioned problems, soft computing method has been widely used in complex 

system modelling, where the hard-to-measure process variables are estimated by the other 

easy-to-measure variables. The artificial neural networks (ANNs) are significant nonlinear approaches 

for nonlinear system modelling and have attracted a lot of attention. In [5], Takens embedding 

theorem based phase space reconstruction is used to extract more information from the limited datasets 

of the chaotic system, where principal component analysis and artificial neural network is then 

adopted to estimate the effluent BOD value. In [6], an improved T–S fuzzy neural network (TSFNN) 

is used to predict BOD values based on the knowledge representation ability and learning capability, 

where a gradient descent method with the momentum item is used to adjust antecedent parameters and 
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consequent parameters. In [2], a flexible structure radial basis function neural network (FS-RBFNN) is 

proposed for water quality prediction, where the hidden neurons in the RBF neural network can be 

added or removed online based on the neuron activity and mutual information. In [1], a self-organizing 

cascade neural network (SCNN) with random weights is proposed for water quality prediction on 

effluent BOD and TP. The SCNN is constructed via simultaneous structure and parameter learning 

processes. The simulation results show that the proposed SCNN has better performance. 

Recurrent neural network (RNN) is a significant nonlinear approach for nonlinear system 

modelling and has attracted increasingly more and more attention. However, the traditional RNN 

based on the gradient method has gradient disappearance and gradient explosion problem. As an 

effective alternative for RNN training, echo state network (ESN) [7] can overcome the local minima 

and gradient vanishing problems. A typical ESN has a large and sparsely connected reservoir. During 

the training process, only the output weights are computed by simple Moore-Penrose inverse method, 

while the input weights and reservoir weights remain fixed once they are generated. This simple and 

effective training approach makes ESN have numerous successful applications such as time-series 

prediction [8], speech recognition [9], and nonlinear signal processing [10]. 

Although ESN has better performance than the traditional neural network, there are still some 

problems in the ESN. Since the output weights are trained by the simple regression, the ill-posed 

problem may exist in the training process. If it happens, the large output weights might occur and the 

generalization ability will be degraded. Additionally, when the number of training samples is less than 

the number of reservoir neurons, the ill-posed problem must happen. To solve the ill-posed problem, 

noise injection is used to improve the network performance, however, there are no satisfactory 

methods to determine the amplitude of noise. The intrinsic plasticity rule is used in the reservoir 

computing setting [11]. However, parameter adaption process based on the gradient method is 

complicated and some hyper-parameters are obtained by experience. In this paper, ridge regression 

method is used to address the ill-posed problem, where the regularization term is introduced into the 

loss function to penalize larger readout weights and the ridge parameter is determined by the 

cross-validation method. 

The remainder of this paper is organized as follows: In section 2, a brief review of the original ESN 

model is given. In section 3, the ridge regression echo state network model is proposed. In section 4, 

the stability analysis is given. In section 5, the simulations are carried out to illustrate the performance 

of the proposed algorithm. Finally, some conclusions are drawn. 

2. Echo state network 

N internal units

in
W W out
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Figure 1. The basic architecture of OESN without feedback connections. 

An original ESN (OESN) [7] without feedback connections consists of three layers, input layer, 

reservoir layer and readout layer. The structure of OESN is presented in figure 1. It is assumed that the 

OESN has K input neurons, N reservoir neurons and L readout neurons, respectively. u(n), x(n), y(n) 

denote the input vector, the reservoir state vector and the readout vector, respectively. The updating 

formula of OESN is given as follows: 
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( ) ( ( ) ( 1))inn n n  x tanh W u Wx ,                             (1) 

( ) ( ( ), ( ))outn n ny W u x  ,                               (2) 

Where W
in
, W, W

out
 are the input weight matrix, reservoir weight matrix and output weight matrix, 

respectively. f is the reservoir active function, which is usually chosen as hyperbolic tangent function. 

The output weights are computed by using the linear regression method as follows 
1(( ) )out T T TW X X X Z                                  (3) 

Where X=[X(1),X(2),,X(P)]
T 

(P is the number of training samples) denotes the internal state 

matrix, X(n)= [u(n)
T
, x(n)

T
]

T
, Z=[z(1),z(2),,z(P)]

T
 is the desired output. 

3. Ridge regression echo state network 

From formula (3), if X
T
X is singular, the ill-posed problem will happen. To obtain a stabilized solution, 

the ridge regression, a widely used regularization method, is applied to introduce a penalty term into 

the loss function as follows. 
2 2

2 2
( ) arg min

out

out out outJ   
W

W Z XW W                        (4) 

Where 0  denotes the ridge parameter. Differentiating with respect to out
W , it can be got as 

follows 

( )
2 ( ) 2

out
T out out

out

J



   



W
X Z XW W

W
                        (5) 

Let
( )

0
out

out

J




W

W
, we have 0T out T out  X XW X Z W , the following equation can be obtained 

( )T out T X X I W X Z                                (6) 

Since the matrix
T X X I must be invertible, the solution of (4) is obtained as follows 

1( )out T T  W X X I X Z .                            (7) 

Where ridge parameter is obtained by cross-validation method. From (7), it is known that the 

ill-posed problem can be solved. 

The detailed steps are summarized in Algorithm 1. 

Algorithm 1  
Step 1: Randomly generate an input weight matrix W

in
 according to uniform distribution and 

initialize the reservoir states X (0). 

Step 2: Randomly generate a reservoir weight matrix W0 with the predefined sparsity and reservoir 

size. Scale W0 to W= (w/ (W0)) W0, where 0<w<1 and (W0) is the spectral radius of W0. 

Step 3: Drive the reservoir by the input signals as (1), discarded a certain number of initial steps 

and collect the internal states at an initial transient nmin. 

Step 4: Compute the output weight matrix W
out

 using (7). 

Step 5: Test the trained RESN. 

4. Stability analysis 

The key of the ESN is that the reservoir should have the echo state property (ESP). ESP means that the 

internal states should be uniquely depend on external input and it is related to the input samples and 

reservoir weight. To describe the ESP, the local dynamics of the system by linearizing the RESN is 

considered. The nonlinear system (1) can be approximated as follows 

( ) ( 1) ( ) ( 1) ( )inn n n n n     x g Wx g W u Ax Bu                  (8) 

where , 1   g tanh g ,denote , in  A g W B g W . 

The sufficient condition of the ESP is that the maximal singular value of reservoir weight matrix W 

is less than 1 ( ( ) 1 W ). Since ( )W W , the sufficient condition is equivalent to 1c W . 

Suppose ( )nx  and ( )nx  are different internal state vectors. 
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A x x g W x x x x

x x

  (9) 

This shows that the current reservoir state is determined by its past external input history, which 

guarantees the ESP. 

5. Simulation 

In this section, the performance of the RESN is evaluated on Lorenz time series prediction, effluent 

BOD and TP prediction in the WWTP. To show the effectiveness of the RESN, the simulations are 

compared with the following models: OESN [7], TSFNN [6], and FS-RBFNN [2]. The reservoir size, 

spectral radius, and sparsity are selected as 200, 0.85 and 0.05, respectively. All simulations are tested 

in MATLAB 2013b environment and run on i7-4790 with CPU 3.60GHz and 8.0GB RAM. 

The normalized root mean square error (NRMSE) is used as the evaluation criteria of model 

performance, which is defined as below: 

2

2
1

( ( ) ( ))
NRMSE

S
i i

t

d t y t

S


                               (10) 

Where di (t) denotes the desired output, yi(t) is the corresponding prediction output, 2
 is the 

variance of the desired outputs, and S is the total number of di (t). 

5.1. Lorenz time series prediction 

The Lorenz system is a mathematical model for atmospheric convection, which is widely used as a 

benchmark in many applications [12]. It can be described as follows 

1

2

3

( )

.

x a y x

y xz a x y

z xy a z

 


   
  

                               (11) 

Where a1=10, a2=28 and a3=8/3 are the system parameter. Figure 2 gives the the trajectory of the 

Lorenz system. 

In this experiment, the data set are generated by the fourth-order Runge-Kutta method with a step 

size 0.01, and only the Y-dimension samples y(t) are used for time series prediction. For y(t), 5000 data 

samples are generated, the first 3000 values are used for training, and the last 2000 values are used to 

test the proposed model. In the training set, the first 1000 samples are discarded to washout the initial 

transient. The initial value is selected as x(0)=1, y(0)=1, z(0)=0. 
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Figure 2. Lorenz attractor 

Figure 3 and figure 4 give the testing output and testing error, respectively. Obviously, the proposed 
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RESN has better prediction performance than OESN. The testing error of RESN is limited in 

[-0.310
-4

, 0.310
-4

], while the testing error of OESN is limited in [-0.910
-4

, 0.910
-4

]. 

The detailed comparison results are listed in Table 1 based on the average of 50 independent 

simulations. As listed in Table 1, although RESN takes more training time than OESN, it has less 

training NRMSE and testing NRMSE compared with other models. 
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Figure 3. Testing output for Lorenz time series    Figure 4. Testing error for Lorenz time series 

Table 1. Comparison of different models for Lorenz time series 

Models Training 

time (s) 

Training 

NRMSE 

Testing 

NRMSE 

OESN[7] 35.18 4.1810
-5

 8.3610
-4

 

TSFNN[6]
 

48.65 6.2110
-4

 7.6810
-3

 

FS-RBFNN[2] 65.32 8.1510
-4

 8.9610
-3

 

RESN 41.18 3.2810
-5

 5.2810
-4

 

5.2. Water quality prediction in the WWTP 

In recent years, wastewater has become one of the major environment problems in the national 

governments worldwide. Treating wastewater and predicting water quality have become very 

important [1]. However, the municipal sewage treatment system is a typical nonlinear system, which is 

difficult to be modeled for complex biochemical reaction. In this section, the main purpose is to 

provide accurate predictions of effluent BOD and TP, which are one of the most important effluent 

quality indices and can reflect the water pollution situation.  

Table 2. Variables used in the prediction model 

Output Inputs 

Effluent BOD COD; TSS; pH; DO  

Effluent TP Influent TP; T; ORP; DO; TSS; pH  

Table 3. List of acronyms used in simulations 

Acronyms Description 

BOD Biochemical oxygen demand 

COD Chemical oxygen demand 

TP Total phosphorus 

TSS Total suspended solids 

DO Dissolved oxygen 

ORP Oxidation reduction potential 

T Temperature 
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Figure 5. Testing outputs for effluent BOD     Figure 6. Testing error for effluent BOD 
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Figure 7. Testing outputs for effluent TP       Figure 8. Testing error for effluent TP 

Table 4. Comparison of different models for effluent BOD prediction 

Models Training 

time (s) 

Training 

NRMSE 

Testing 

NRMSE 

OESN[7] 25.13 0.1742 0.1956 

TSFNN[6]
 

79.65 0.3328 0.4376 

FS-RBFNN[2] 93.32 0.3129 0.4267 

RESN 32.18 0.1182 0.1329 

Table 5. Comparison of different models for effluent TP prediction 

Models Training 

time (s) 

Training 

NRMSE 

Testing 

NRMSE 

OESN[7] 24.36 0.0032 0.0156 

TSFNN[6]
 

78.63 0.0098 0.0398 

FS-RBFNN[2] 88.35 0.0069 0.0278 

RESN 31.19 0.0018 0.0089 

After deleting the abnormal data, 333 samples are obtained from a sewage treatment plant in 

Beijing, China. The RESN selects some important subsidiary variables for effluent BOD and TP 

prediction, respectively. The detailed water quality parameters listed in Table 2 are selected as the 

input variables of the prediction model, and the description of each variable can be found in Table 3. 

For the samples data, the first 200 samples are used for training, 50 samples in training set are 

discarded to washout initial transient, and the last 133 values are used to test the network performance. 

Before the simulation, the inputs and the target outputs are normalized into [-1, 1]. After simulations, 

the outputs are converted. 
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The simulation results for effluent BOD are shown in figure 5 and figure 6, respectively, which 

illustrate that the RESN has more accurate prediction than OESN for actual time-series. Likewise, the 

simulation results for effluent TP are shown in figure 7 and figure 8, respectively. Based on 50 

independent simulations, the detailed results for effluent BOD and TP are listed in Table 4 and Table 5, 

respectively. From the comparison results of different models, it is seen that the training time of RESN 

is more than OESN, however, RESN is faster than TSFNN and FS-RBFNN. The training NRMSE and 

the testing NRMSE of RESN are less than other models, which means that the RESN has high 

accuracy than other models. 

6. Conclusion  

In this paper, an RESN model based on ridge regression echo state network is proposed. Since the 

output weights are computed by Moore-Penrose inverse, the ill-posed problem may exist in the ESN. 

The proposed RESN can solve the ill-posed problem by adding a penalty term to the loss function. The 

simulation results show that the proposed RESN model can get good performance and has a smaller 

testing error than other models. 

Acknowledgments  

This research was supported by China National Institute of Standardization (522018Y-5941, 

522018Y-5948). 

References 

[1] Li F J, Qiao J F, Han H G, Yang C L 2016 A self-organizing cascade neural network with 

random weights for nonlinear system modeling Appl. Soft Comput. 42 184 

[2] Han H G, Chen Q L, Qiao J F 2011 An efficient self-organizing RBF neural network for 

water quality prediction Neural Netw. 24(7) 717 

[3] Han H G, Qiao J F 2010 A self-organizing fuzzy neural network based on a 

growing-and-pruning algorithm IEEE Trans. Fuzzy Syst. 18(6) 1129 

[4] Han H G, Qiao J F 2013 A structure optimisation algorithm for feedforward neural network 

construction Neurocomputing 99 347 

[5] Qiao J F, Hu Z Q, Li W J 2016 Soft measurement modeling based on chaos theory for 

biochemical oxygen demand (BOD) Water 8 581 

[6] Qiao J F, Li W, Han H G 2014 Soft computing of biochemical oxygen demand using an 

improved T–S fuzzy neural network Chin. J. Chem. Engin. 22(11-12) 1254 

[7] Jaeger H, Haas H 2004 Harnessing nonlinearity: predicting chaotic systems and saving 

energy in wireless communication Science 304(5667) 78 

[8] Qiao J F, Li F J, Han H G, Li W J 2017 Growing echo-state network with multiple 

subreservoirs IEEE Trans. Neural Netw. Learn. Syst. 28(2) 391  

[9] Skowronski M D, Harris J G 2007 Automatic speech recognition using a predictive echo 

state network classifier Neural Netw. 20(3) 414 

[10] Xia Y, Jelfs B, Hulle M M V 2011 An augmented echo state network for nonlinear adaptive 

filtering of complex noncircular signals IEEE Trans. Neural Netw. 22(1) 74 

[11] Schrauwen B, Wardermann M, Verstraeten D 2008 Improving reservoirs using intrinsic 

plasticity Neurocomputing 71(7–9) 1159 

[12] Xu M, Han M 2016 Adaptive elastic echo state network for multivariate time series 

prediction IEEE Trans. Cybern. 46(10) 2173 


