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Abstract. Aluminium-lead alloys are considered to be vital materials for the 21st century, and 
applications of these alloys are used in a great many heavy-duty roles such as boring mills, 
presses, lathes, milling machines, and hydraulic pump bushings. In this work, an equal channel 
angular pressing (ECAP) process was used to enhance the mechanical properties of Al-Pb 
bearing alloy prepared using a mechanical alloying method. This work is divided into two main 
parts: Part I deals with the production of rectangular billets of 15 × 15 × 45 mm3 in size 
constructed by mixing powders of Al-10%Pb-4.5%Cu by weight for two hours using a ball 
milling process. The mechanical properties obtained for these alloys were 191 MPa 
compressive strength and 50 HV micro hardness. Part II is concerned with the design and 
manufacture of an ECAP die for a channel angle of 135° with multi passes using rout BC radius 
of curvature with inner radius R equal to 15 mm and outer radius r equal to 5 mm suitable for 
the chosen alloy. The billet produced in part I was then preheated and pressed through the 
ECAP die. The results obtained from the experimental work showed an increase in mechanical 
properties: the enhancement of compression strength reached 38%, and that of micro hardness 
28% in the first pass; further enhancements of compression strength and micro hardness were 
44% and 36% respectively in second pass, without any reduction of ductility in the alloy. 
 

1. Introduction 
Severe plastic deformation (SPD) is a unique process that has grown in importance in the last decade 
due to its potential application in developing significant deformations in a variety of materials and 
alloys, as well as its production of ultra-fine-grained microstructures. The processes related to 
fulfilling the operation goals are equal-channel angular pressing (ECAP), and high-pressure torsion 
(HPT) [1]. To produce the ultra-fine grain structure, ECAP is considered to be the prime technology. 
One important advantage of ECAP is that it retains the dimensions of the billet while exposing it to a 
large amount of shear strain [2]. The ability to repeat the ECAP process several times with no change 
in dimensions while increasing the applied strain to the required level is one of the important benefits 
of the process. Applying severe strains and simple shear mode enhances the properties of the produced 
material, which offers an important advantage [3]. Materials including metals, polymers, ceramics, 
and composites have been tested using the ECAP process [4], also known as equal channel angular 
extrusion (ECAE) in work by Segal et.al in the 1980s in USSR formerly [3]. Figure 1 shows a 
schematic diagram for the die commonly used in the ECAP process.  
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      Figure 1. Conventional ECAP process [5]. 

 
 

Figure 2 shows a schematic diagram of four different routes used in the ECAP process. In path (A), 
the billet is pushed with no rotation, while in path (BA) the billet can be rotated by 90° following each 
sequential pass. In path (BC), the billet can be rotated 90° in its original direction (either clockwise or 
anti-clockwise), while in path (C), the billet can be rotated 180° along all passes [6]. 
 
 

Figure 2. Processing paths (routes) in ECAP [7]. 

 
Veeranjaneyulu et al (2016) studied the effective parameters of die design in the equal channel 
angular pressing process when using different channel angles (90°, 120°, and 135°) with AA6351 
billet material. The study concluded that large changes in material properties were achieved in a single 
pass when using very low values for φ and Ψ. It also showed that the greater angle channel, the less 
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changeable the levels of stress and strain were [8]. Mohammed Hadi Ali (2015) used multi pass equal-
channel angular pressing with high chromium carbon steel die in four passes using route B with 5 
mm/min deformation speed at a temperature of 250 ºC. Different percentages of Mg2Si and Si contents 
were thus examined to study the effect on Al-Si/Mg2Si as the main alloy. Increasing the passes of 
equal channel angular pressing reduced Mg2Si particles and achieved a smaller size of dendrite Mg2Si 
particles. The columnar α-Al phase created equiaxed grains after the deformation was achieved 
repeatedly [9]. Pure aluminium was used in the study presented by Nashith et al (2014), which 
showed an improvement in hardness due to severe plastic deformation using the ECAP process. The 
grain size refinement was related to the number of passes and suitability of routes. In general, the 
study concluded that the ECAP process should be regarded as an effective and simple way to improve 
the mechanical properties of aluminium and aluminium alloys [10]. The influence of the ECAE 
process on the microstructure and tensile behaviour of materials was further studied by Mohan Reddy 
et al (2013). In this study, route A was used, showing that an improvement in the mechanical 
properties of Al alloys could be achieved by means of severe plastic deformation. The evolutionary 
rate of microstructure creation during a multi pass ECAE process in aluminium (7075) alloy using die 
angles 120◦ and 50◦ for Φ and ψ respectively was evaluated using an optical microscope. In this 
process, two passes were required to obtain an ultrafine-grained structure for this alloy. Increases in 
strength and hardness are obviously obtained when using the ECAE process, and increasing the 
number of passes enhanced the effects on strength and hardness because of the fine grain structure 
obtained [11].  
The combined effect of natural aging and severe plastic deformation (SPD) on microstructure, 
strength, and ductility in equal channel angular pressing was studied by Nguyen Q. Chinh et al 
(2010). In this study, AlZnMg alloy was used and the process was carried out at room temperature. 
The results showed that one or two passes were sufficient to achieve valuable improvements in 
strength and to reduce microcracks formed during severe plastic deformation. Using equal channel 
angular pressing with certain numbers of passes increased the ductility of samples used in addition to 
adding to their strength [12]. The microstructural evolution rate and tensile and impact toughness of an 
aluminium-zinc copper (Al-40Zn-2Cu) alloy were studied by PURCEK et al (2009) using ECAE 
route A or route BC with not more than four passes. Complete elimination of as-cast dendritic 
microstructure casting defects such as micro porosities was achieved. The study showed enhancement 
for both strength and ductility when compared with as-cast condition, and the number of passes and 
the routes of the process acted as effective parameters on both strength and ductility. After using the 
ECAE process, the produced alloy behaviours shifted from brittle to ductile [13].  
Using lead and tin as additives for aluminium alloys also has a bearing on applications. Tin offers 
higher friction and scratch features than lead, which is nevertheless regarded as a generally effective 
additive in soft phase alloying; Al-Pb alloy is considered to be the premium aluminium-based bearing 
alloy. The homogenized spread of soft phase in aluminium matrix contributes to improving wear 
properties [14]. The aim of the present work is thus to improve the mechanical properties and 
microstructure of an Al- Pb–Cu alloy used as bearing alloy.  
 
2.    Experimental Work 
2.1.   Preparation of Samples 
A mechanical alloying process was used to prepare the samples of Al- Pb –Cu) alloy without any 
additions. The chemical composition of the alloy was 85.5% Al- 10% Pb- 4.5% Cu, by weight. 
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Two-hour duration ball milling, compacting at 400 MPa, and sintering at 450 °C for 30 minutes in an 
argon protection furnace was used to produce square cross section billets of 15 mm ×15 mm with 45 
mm height. Figure (3) shows a photo of the die used to produce the green compacts (billets), while 
figure (4-a) shows a schematic diagram and figure (4-b) shows a photograph of the billets. 

 
 

 

            Figure 3. Die used to produce the billets 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 2.2.  Die Material and Design 

The ECAP die was made from tool steel with two parts. Part one consisted of two grooves with square 
cross-sections of 15 mm × 15 mm manufactured to form an angle of 135°. The radii for both inner and 
outer lines, marked as in figure (5) as (R) and (r), were of 15 mm and 5 mm, respectively. A 
photograph of part one of the die is shown in figure (6). 

                       

Figure 4. (a) Schematic diagram, and (b) a photograph of billet produced. 

(a) (b) 
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Part two was a flat plate that acted as a cover for the first part to form the route was formed. Four 
heaters with K type thermocouples were built within part two of the die to supply the rig with a 
suitable heat flux to assist the billets passage through the route, and digital controller was connected to 
control the required temperature for each run. Figure (7) shows the two parts of the die with the 
plunger. 

 

     Figure 5. Schematic diagram of ECAP die 

 

 

 
 
 
 

 

 

Figure 6. Photograph of part one of the die.  
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                            Figure 7. A diagram of both parts of the die with the plunger. 

 
2.3. Procedure  

The two parts of the die were assembled inside an adjustable enclosure made of tool steel to withstand 
the high forces applied, with six bolts and nuts used to fix the two parts tightly together. The 
assembled rig is shown in figure (8). 

 

Figure 8. ECAP Die with heating system 
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The first step was to insert the sample inside the die with an adequate quantity of lubricant around the 
sample and inside surface of the die to reduce the friction generated during pressing. The second step 
was to heat the sample and die to 250 °C using the electric heaters. Several different runs for 
temperatures ranging from 50 °C to 250 °C were undertaken; however, any run under 250 °C 
destroyed the billet inside the die. At 250 ˚C, the billet flow smoothly without any cracks. After the 
system was heated to a required temperature, the compression test device was used to apply the 
required pressure. The plunger was used to press the sample into the intersection of the two channels 
of the die with a ram velocity equal to 0.1 mm/sec and a force of 33 KN. After the sample was pressed 
into the die channel and exited from the other side, it was reinserted into the die using route B C for a 
second pass. 
 
2.4.  Examination of the mechanical properties of samples  

The deformed billets were prepared for examination of their mechanical properties. According to 
ASTM standards section E9, the billets were machined to standard dimensions for compressive 
strength tests. Vickers micro hardness tests were employed for the billets after preparation before they 
were cut into cubic samples prior to grinding and polishing. The same tests were applied on the billets 
before and after deformation through the ECAP die to assess the results 

3.  Results and Discussion  
The configuration of the deformed billet after the first and second pass is shown in figure (9).  

 

 

Figure 9. Billet shape after first and second passes. 

 

The mechanical properties of the produced deformed billets showed improvements. Figure (10) shows 
the micro hardness of the deformed samples after the first and second passes. The figure shows the 
values of hardness along the width of each sample was not homogeneous due to the variance of strain 
caused by the radius of curvature on both two sides of the groove which affected the produced 
mechanical properties; thus, the properties became anisotropic, and the trend of curve agreed with the 
reference results [1]. Hence, the procedure was performed using a second pass through route BC, 
which rotated the sample produced in pass 1 at an angle of 90°, re-entering it into the die and 
deforming it to make the properties of the sample homogenous. 
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Figure 10. Vickers microhardness (HV) distribution through sample 
using ECAP die. 

 

The mechanical properties of samples before and after pressing them into the angular die are listed in 
table 1. 

  
   Table 1. The mechanical properties of Al-Pb alloy before and after deformation 

through ECAP die (135°). 
 Vickers 

Micro 
Hardness 

(HV) 

Ultimate 
Compression 

strength (MPa) 

Yield  
Compression 

strength (MPa) 

Ductility 
(%) 

Before 
deform  

50 191 153 12.5 

After 
deform 
Pass 1 

64 264 202 18 

After 
deform 
Pass 2 
 

68 276 208 18.8 

 

From table 1, the yield and ultimate compression strength and the magnitude of strength and hardness 
enhancement were increased during deformation after pass 1, with further enhancement noted after 
pass 2. The percentage enhancement of compression strength reached 38% and 44% at pass 1 and pass 
2 respectively, and the percentage of enhancement of micro hardness reached 28% and 36%. This was 
due to strain hardening in the material because of the deformation process. In addition, the 
deformation took place without any significant change in dimensions, strongly enhancing the 
mechanical properties and improving the ductility. This is an improvement over conventional 
improving processes which lead to improved hardness and strength but reduced ductility. Thus, one of 
the characteristics of the ECAP process is retaining ductility of material and improving it, which is 
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very useful for improving fatigue properties especially where parts produced in this process are used 
as bearings parts where high fatigue strength is a major property of concern.  
In general, in the present work, the enhancement of mechanical properties and microstructure for the 
Al-Pb bearing alloy was done without an excessive period of ball milling as seen in all previous papers 
(20, 30, and 40 hours of mixing). The process followed included a reduction in the mixing time to the 
lowest time necessary for alloying the powder. Nevertheless, the results obtained had good agreement 
with previous papers, so the costs of power consumed were reduced, and the life time of the required 
devices extended without negative impact. 
 

4.  Conclusions  
1. The ECAP process is a more attractive method for enhancing the mechanical properties of Al- Pb 

alloy. 
2. For deformation processes in an ECAP die at 135°, the percentages of enhancement of compression 

strength reached 38% and 44% in pass 1 and pass 2, respectively, and the percentage of 
enhancement of micro hardness reached 28% and 36%, respectively.  

3. In the present work, in addition to an increase in the mechanical properties of compression strength 
and micro hardness, increased ductility was observed. 

4. The time and power consumed to produce the required characteristics in the alloy by means of 
mechanical alloying are reduced by use of the ECAP process. 
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