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Abstract: Cascaded Thermal Energy Storage (CTES), a term that refers to a thermal energy storage 
system with multiple phase chance materials (PCMs), has been suggested as a solution for heat 
transfer reduction through the process of heat exchange by reducing temperature differences. The 
PCMs used are thus paraffin waxes with different melting temperatures. A numerical simulation was 
made to determine the optimum length of a CTES system compared with use of a single PCM. The 
enthalpy-porosity theory was utilised to simulate the phase transition of the PCM, and the simulations 
then used to mimic the charging and discharging of thermal energy storage of optimum length at 
different heat transfer fluid flow rates. The results indicated that heat transfer can be greatly 
enhanced, and melting and solidification time significantly reduced, by using multiple PCMs as 
compared with using a single PCM.

1. Introduction 
In recent years, energy consumption has expanded dramatically because of global economic development. 
As a result, there has also been an increase in greenhouse gases emission and environmental pollution. These 
factors have led to increased efforts improve energy efficiency so as to reduce overall energy consumption. 
Thermal energy storage (TES) is an effective method of balancing energy demand and energy supply, 
allowing the energy system to be more stable and efficient by storing excess thermal energy during high 
production hours and using it during low production hours [1].
TES can be categorized into three main divisions: storage of sensible heat, storage of latent heat, and storage 
of thermochemical energy [2]. Storage of latent heat is an attractive technique due to its ability to supply 
high density energy storage over a relatively constant temperature range analogous to the phase change 
temperature of the storage material [3]. The materials used in the storage of latent heat are referred to as
phase change materials (PCMs), and such PCMs have been studied in several different applications,
including solar power plant energy saving buildings [4], systems of waste heat recovery [5], the cooling of 
electronic devices [6], greenhouses [7], and solar cookers [8].
During charging, the PCMs absorb heat and their temperatures rise; thus, PCMs perform as sensible storage 
materials. Solid PCMs thus convert to liquid PCMs and the thermal energy is conveyed in this change. The 
PCMs absorb thermal energy at even small differences in temperatures and store 5 to 14 times more energy 
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than sensible storage materials [9]. The process reverses on release of heat during the discharge process and 
the PCM liquids completely revert into solids.
The high capacity of storage for small temperature differences is the major advantage of latent heat storage 

over storage of sensible heat; however, this does not mean that storage of latent heat cannot be beneficial at 
wider temperature differences. Nevertheless, it is reasonable to split a wide temperature difference into 
smaller divisions, each wrapped in a different PCM with an appropriate phase transition temperature [10]. 
A combination that uses multiple PCMs with various melting temperatures is called a Cascaded Thermal 
Energy Storage (CTES) system. Another objective for using CTES is that the charge and discharge time is 
limited in the most common functional case, and the heat must be released or stored rapidly. During the 
charging of storage systems with single PCMs, the heat transmits to the PCM from the heat transfer fluid 
(HTF) very rapidly. Thus, the temperature of the HTF decreases, and the temperature difference between 
the HTF and the PCM decreases, leading to reduced heat transfer at the storage end. Consequently, the PCM 
melts quickly at the part where the HTF enters the storage, but very slowly at the storage end where the 
HTF exits the storage. The problem is the same for discharging: the PCM at the storage ending might not 
be utilised in raising the HTF's temperature. This problem can be solved by creating a CTES [11].
Farid et al. [12, 13] experimentally and numerically constructed a model that included several cylindrical 
capsules filled with three PCMs with different melting points; the results showed enhancements in both 
charging and discharging. Gong and Mujumdar [14, 15] evolved a finite element model for a high-
temperature thermal storage system of a slab [15] and a tube [14] that used five PCMs, finding a considerable 
improvement in heat transfer compared with the use of one PCM. Wang et al. [16] experimentally analysed 
the charging of a cylindrical thermal storage capsule containing multiple PCMs, discovering that the melting 
process was 15 to 25% faster than in systems containing one PCM. Shaikh and Lafdi [17] conducted a 
simulation to study the effects of utilising various arrangements of multiple PCMs slab configurations with 
various melting points, and they demonstrated significant enhancements in heat transfer. Fang and Chen 
[18] investigated a shell and tube storage system with multiple PCMs, noting that presence of an optimal 
assembly of multiple PCMs offered extreme thermal energy charging rates. Wang et al. [19, 20] numerically 
studied a heat exchange device with a zigzag arrangement including multiple PCMs throughout the 
discharge [19] and charge [20] process; the results indicated that intensified charging and discharging in 
comparison with the use of one PCM.
The present paper thus aims to numerically investigate the optimum length of CTES, as compared with a
TES with one PCM, and then to perform simulations for charging and discharging CTES with this best 
length. 

2. Physical problem  
To determine the optimum length of a CTES, a comparison between Single-stage Thermal Energy Storage 
(STES) and CTES for different lengths was completed. A STES was formed with only PCM2 (Figure 1), 
while the CTES was constituted of three PCMs along the flow direction of HTF: PCM 1, 2, and 3 (Figure 
2). The PCMs used were paraffin waxes and their thermo-physical properties are recorded in Table 1 [21]. 
The melting temperature of PCM2 (in STES) has an intermediate value between PCMs 1 and 3, to give 
comparability between STES and CTES. The HTF is air, and its properties are listed in Table 2 along with 
other relevant system parameters. The CTES with the best length was then studied with regard to the 
charging and discharge process. For the charging process, a PCM with a lower melting temperature was
positioned at the end of the storage to ensure that the temperature difference between the HTF and PCMs 
was sufficiently large to ensure melting of all PCMs; this arrangement was inverted during the discharging 
process, as shown in Figure 3.
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                   Figure 2. CTES                                                                                                 Figure 1. STES                                               

Figure 3. PCM arrangement

Table 1. Thermo-physical properties of PCMs [21]

PCMs PCM1 PCM2 PCM3
331 336 340
840 850 860
765 766 767
2763 2817 2871
0.21 0.212 0.214
0.0116 0.01215 0.0127
0.00031 0.000305 0.0003
267670 270715 273760
321 326 330
335 340 344

Table 2. System parameters

HTF properties System dimensions
1.225

h1 = 20mm, h2 = 25mm
L1 = L2 = L3

1006.43

0.0242

1.7894e-05

373

294



4

1234567890‘’“”

2nd International Conference on Engineering Sciences IOP Publishing

IOP Conf. Series: Materials Science and Engineering 433 (2018) 012043 doi:10.1088/1757-899X/433/1/012043

3. Numerical model  
A simulation of the melting and solidification processes of PCMs was applied using the enthalpy-porosity 
method [22]. In this method, there is no explicit tracking for the liquid-solid interface; instead, there is a 
mixed liquid-solid region, referred to as a mushy zone. This zone is modelled as a porous medium, with a
porosity specified as ��������	
�
�������
�����
��	������������������������given by [23]

� = 0                                            for      T < Tsolidus

� = (� � �_����	
�)/(���
����� � ���
�����)                      for      Tliquidus < T< Tsolidus           

� = 1                                            for      T > Tliquidus                                                                               (1)

where T is the local temperature. Thus, the velocity will be affected as follows:

� = ��                                                   in the liquid phase

� = ���                                               in the mushy zone

� = 0                                                   in the solid phase                                                                             (2)

where V is the superficial velocity and V1 is the actual velocity [22]. A Boussinesq approximation is utilised 
to simulate the natural convection in the PCM, and thus the density of the PCM varies with temperature 
[24]:

� = �� [1 � �(� �  ��)] 
                                                                                                                                                                   (3)
where �����
���������
�	��
�����
���������0 �	
��0 ����
��������
�	��
� ����
�����	
�
�	��
����	
�!����
���

thermal expansion coefficient. Assuming the flow of the liquid PCM is Newtonian, incompressible, and 
laminar, the governing equations are continuity, momentum, and energy. The continuity equation can
therefore be illustrated as [25]

��
�� + �. ������ = 0 
                                                                                                                                                                      (4)
where t is the time. The pressure losses of flow produced by the existence of the solid PCM can be estimated
using the source terms in the momentum equation [26]:

� �����
�� + ��. �������� = ���!���� � �" + #� 

                                                                                                                                                                    (5)
"�����#����
����������
�����
�������������
������������ and the vector #� is a global source term given by the 
following form:

#� = (�$%)&
(%'*€)' ,-��2 ��� + �3��(� � ��)                                              

                                                                                                                                                                     (6)
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The first term on the right-hand side appears due to the existence of solid PCM in the mixed region, where 
€ is set as a small number (less than 0.001) to prevent division by zero [27].  ,-��2 is the mushy zone 
constant, which acts as a damping factor of velocity through the solidification of the PCM. Its value affects
the PCM melting rate, and here it is set to 105 kg/m3s [28]. The second term is the Boussinesq approximation, 
which is essential for modelling the natural convection in the liquid phase of the PCM. The vector 3� is the 
gravitational acceleration, which is equal to 0 m/s2 in the x-direction and -9.81 m/s2 in the y-direction. The 
energy equation can be described as [20]

�
��(�4) + �. �����4� = �. (5��) + #2 
                                                                                                                                                                      (7)
where 4 is the sensible enthalpy, which can be expressed as [29]

4 =  4678 + 9 :;	�<
<>?@

+ �A 
                                                                                                                                                                      (8)
where 4678 is the enthalpy at the reference temperature �678, and :; and L a���
��������$�����
��
�����	�
�	
�
pressure and the latent heat of the PCM. #2 is the energy source term, given by [20] 

#2 = �(�B4)
�� + �. �����B4� 

                                                                                                                                                                   (9)
The flow of HTF is assumed to be turbulent flow; to consider the turbulence effect, the (C � D) model [28] 
was thus implemented in the numerical model. Two-dimensional numerical simulations were made with 
ANSYS Fluent. For the grid independence solution, three different grid densities were tested, with 21,600, 
84,000, and 336,000 elements, respectively. The results showed that the 84,000 elements density was most 
suitable, because it represented the best compromise between solution accuracy and computational cost (see 
Figure 4).  A comparison with the work in [30] was undertaken for model validation: the same characteristics 
were used, and the two models gave similar results (see Figure 5), demonstrating good agreement between 
them.

Figure 4. The grid independence solution.
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                                 (a)                                                                           (b)
Figure 5. Comparison between (a) proposed numerical model, and (b) the work in [30]

4. Results and discussion  

4.1. Best length of CTES 
In order to determine the best length of CTES containing the selected PCMs, a comparison between the
CTES and STES was carried out for different lengths (750; 1,000; 1,200; 1,500; and 2,000 mm) during the 
discharge process. Figure 6 illustrates the percentage of improvement in solidification time of each CTES 
over STES, categorised by length. As shown, increases in length lead to increases in the percentage of 
improvement in solidification time to a length of 1,200 mm, where the highest increase in the percentage of 
improvement is seen; after that, the percentage of improvement decreases. This means that a length of 1,200 
mm is optimal for using these PCMs. 

Figure 6. The best length of CTES.

 

500 s 500 s1500 s 1500 s2500 s 2500 s
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Figure 7. Liquid fraction contour for STES and CTES at 4,000 s for (a) charging and (b) discharging 
process 

   

(a)              (b)

Figure 8. Average liquid fraction for STES and CTES for (a) charging and (b) discharging process.

In Figure 7, the liquid fraction contours for both STES and CTES at the best length can be seen at the same 
instant of time (4,000 s), for both charging and discharging processes. The red region is the liquid phase,
while the blue region is the solid phase. Alternating colours represent the mushy zone. Clearly, the charging 
and discharging processes are faster and more uniform in CTES compared with STES, as CTES ensures 

STES

CTES 

CTES 

(a) 

(b) 

STES 
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almost uniform temperature difference between the HTF and PCMs along the storage. Figure 8 also shows 
a comparison of the average liquid fractions; it can be seen that the liquid fraction tends to rise faster with 
CTES during the charging process (Figure 8 (a)), where the melting time for STES is 6,860 s, while for 
CTES it is 4,595 s. Similarly, for the discharge process (Figure 8 (b)), the solidification time for STES was 
4,685 s, while for CTES it was 4,257 s. This means that CTES significantly improves heat transfer for both 
charging and discharging processes, although more improvement is seen for charging process. This finding 
is critical, and common in all literature dealing with this subject. The main cause of this phenomenon is that 
during the discharging process, the upper layers of the PCM solidify first, and thus act as additional
resistance to heat transfer, reducing any enhancement. However, in the charging process, the upper layers 
of the PCM melt first, enhancing the heat transfer and allowing natural currents to be developed. As shown 
in Fig. 8, the effect of CTES is clearly shown in the final stages of the charging and discharging processes;
this is because the temperature difference between the PCM and HTF reduces at the final stages in STES,
while CTES works to increase this difference and accelerate heat exchange. 

4.2. Influence of HTF velocity variation on CTES 
The influence of HTF velocity variation on outlet air temperature for the charging and discharging processes
is illustrated in Figure 9. During the charging process (Figure 9 (a)), the minimal HTF velocity (v=1 m/s) 
was used to give the minimal outlet temperature and maximum difference between inlet and outlet 
temperatures; this is because at lower velocity, the air has more time to flow over the PCMs and enable 
more heat exchange. The maximum HTF velocity (v=15 m/s) similarly gives the maximum outlet 
temperature, ensuring minimal difference between inlet and outlet temperatures due to the lower amount of
time that the passing air is exposed to PCMs. For the discharging process (Figure 9 (b)), the maximum 
velocity again gave a minimal difference between outlet and inlet temperatures, and the minimal velocity 
give the minimal difference between outlet and inlet temperatures, for the reasons mentioned above. Each 
curve ends when melting (Figure 9 (a)) or solidification (Figure 9 (b)) is complete; this indicates that the 
HTF velocity affects the melting and solidification time, as shown in Figure 10, where it is noted that 
increased velocity leads to a significant reduction in both melting and solidification time. It should be noted 
that the melting process at (v=1 m/s) is never completed; this velocity is not sufficient to melt the PCMs, 
and thus higher velocities were used throughout.
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(a)   (b)

Figure 9. The influence of HTF velocity variation on outlet air temperature for (a) charging and (b) 
discharging process.

Figure 10. The influence of HTF velocity variation on melting and solidification time.

5. Conclusions  
The numerical investigation into thermal performance of CTES was accomplished; the enthalpy-porosity 
theory was applied to simulate the phase change of the PCMs, and the comparison between STES and CTES 
for different lengths was established, with the results indicating that the length of CTES was 1,200 mm for 
the selected PCMs. The CTES with the best length was seen to be greatly enhanced in terms of heat transfer 
for both charging and discharging processes, especially in the final stage, and the melting and solidification 
times were significantly reduced. Simulations of the charging and discharging processes for a CTES with 
the best length under the influence of HTF velocity variations of outlet air temperature were accomplished,
and the effects on the melting and solidification times were studied. The results showed that increased 
velocity reduced the difference between air inlet and outlet temperatures, thus reducing the process time. 

Air inlet temp. 

Air inlet temp. 
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