
1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890‘’“”

2nd International Conference on Engineering Sciences IOP Publishing

IOP Conf. Series: Materials Science and Engineering 433 (2018) 012086 doi:10.1088/1757-899X/433/1/012086 

Locally Optimal Detection of Signals in Underwater Acoustic 
Noise with Student’s t-distribution 

Y Yousif Al-Aboosi, H Abdulrahem Taha, H Ali Abdualnabi 
Faculty of Engineering, University of Mustansiriyah, Baghdad, Iraq. 

 
 

Abstract: Signal detection is imperative in underwater signal processing and digital 

communication, and based on a knowledge of noise statistics, optimum signal detection in 

underwater acoustic noise (UWAN) can be more effectively realised. The hypothesis of normal 

(Gaussian) noise allows the use of matched filter (MF) detectors; accordingly, a locally optimal 

detector (LO) is designed in this study to improve detection probability (𝑃𝑃𝐷𝐷)  based on the 

knowledge of noise probability density function. The underwater noise used for validation is 

real data collected from the sea using broadband hydrophones at the beach of Desaru on the 

eastern seashore of Johor, Malaysia. The performance of the LO detector is then compared with 

a conventional MF detector and these are evaluated according to their 𝑃𝑃𝐷𝐷 values. For a time-

varying signal, a false alarm probability specified as 0.01, and a 𝑃𝑃𝐷𝐷 value of 90%, the energy-

to-noise ratios (ENR) of the LO are better than those of the MF by 4.2 dB and for fixed 

frequency signals, the LO is better than the MF by 5.2 dB.  

Keywords: Underwater Acoustic Noise  Detection theory  Student's t-distribution  non-Gaussian signal detection. 

1. Introduction 
The detection of signals in the presence of noise is a significant problem that arises in various signal 
processing applications, including radar and sonar systems. Previous studies on detection [1, 2], 
assumed that signals are embedded in additive white Gaussian noise, and that receivers are designed 
accordingly. However, various practical noise sources, such as atmospheric noise detected with radar 
systems and underwater acoustic noise (UWAN) detected with sonar systems, are non-Gaussian and 
show highly impulsive characteristics. Where these noises' statistics are known, the matched filter (MF) 
detector is regarded as the optimum detector when the noise is Gaussian [1, 3]. The MF detector 
becomes less than ideal when the noise is non-Gaussian, however, because of degradation in its 
performance [4]. In spite of this disadvantage, and because of its simple implementation and the absence 
of complete statistical data about underwater noise, the MF detector remains widely used for signal 
detection where noise does not follow a Gaussian pdf [4, 5]. UWAN in shallow waters with biological 
noise is non-Gaussian distributed, and features accentuated impulsive behavior [6-8]. The suboptimum 
performance of MF detectors in UWAN thus creates major potential for enhancing performance in 
underwater conditions [3, 5]. 

In this study, an experimental model for noise in an acoustic underwater channel was developed based 
on field data measurements, and through Monte Carlo simulation, the performances of locally optimum 
detectors (LO) in UWAN were compared with conventional MF detectors. The paper is organised as 
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follows. Section 2 offers a summarized introduction of the signal model and the data collection and 
analysis techniques used to define the properties of UWAN. Section 3 describes the signal detection in 
t-distribution noise using LO. Section 4 presents the results, and Section 5 briefly discusses the 
conclusions. 

 

2.  Signal Detection Problem 
In this section, a shared problem in digital communication using radar and sonar systems is presented, 
where a known signal is to be detected in a non-Gaussian additive noise channel. 

2.1 Signal Model 
The signals used are a fixed frequency sinusoidal signal and linear frequency modulated (LFM) signal. 
These are used to represent the single frequency signals and time-varying signals that could be 
encountered in practical situations. An arbitrary sinusoidal signal can be defined as follows: 

𝑠𝑠(𝑛𝑛) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜃𝜃(𝑛𝑛))                    0 ≤ 𝑛𝑛 ≤ 𝑁𝑁 − 1 

= 0                                      elsewhere 
         (1) 

where 𝑁𝑁 is the signal duration in the samples, 𝐴𝐴 is the signal amplitude, and 𝜃𝜃(𝑛𝑛) is the instantaneous 
phase. For a fixed-frequency signal, the instantaneous phase is defined as 

𝜃𝜃(𝑛𝑛) = 2𝜋𝜋𝑓𝑓𝑚𝑚𝑛𝑛𝑇𝑇𝑠𝑠           (2) 

where 𝑓𝑓𝑚𝑚 is the signal frequency and 𝑇𝑇𝑠𝑠 is the sampling period. The instantaneous phase for the LFM 
signal is 

𝜃𝜃(𝑛𝑛) = 2𝜋𝜋(𝑓𝑓𝑚𝑚 +
𝜑𝜑
2
𝑛𝑛𝑇𝑇𝑠𝑠)𝑛𝑛𝑇𝑇𝑠𝑠          (3) 

where 𝜑𝜑is the frequency defined as 𝜑𝜑 = 𝑓𝑓𝐵𝐵𝐵𝐵/𝑁𝑁𝑇𝑇𝑠𝑠, where 𝑓𝑓𝐵𝐵𝐵𝐵 is the bandwidth of the signal. The 
received signal can be defined as follows: 

𝑥𝑥(𝑛𝑛) = 𝑠𝑠(𝑛𝑛) + 𝑣𝑣(𝑛𝑛)          (4) 

where 𝑠𝑠(𝑛𝑛)is the signal of interest and 𝑣𝑣(𝑛𝑛) is the UWAN.  

The main idea of detection is to determine the presence of a signal in the underwater noise. Given an 
observation vector 𝑥𝑥 and several hypotheses, Hi, the goal is to discover the set of data that matches a 
hypothesis. Although the number of hypotheses could be random, the situation of having two 
hypotheses, H0 and H1, is considered valid for most  communication, radar, and sonar systems [1]. The 
hypothesis-testing is thus expressed as follows: 

 H0 (Null hypothesis): 𝑦𝑦(𝑛𝑛) = 𝑣𝑣(𝑛𝑛)                           n = 0, 1, . . . ,N − 1 

H1 (Alternative hypothesis) :𝑥𝑥(𝑛𝑛) = 𝑠𝑠(𝑛𝑛) + 𝑣𝑣(𝑛𝑛)   n = 0, 1, . . . ,N − 1 

(5) 

(6) 

Neyman–Pearson (NP) and Bayesian methods are primarily used for hypothesis testing. Method 
selection depends on the availability of the prior probability, as although digital communication and 
pattern recognition systems use Bayes risk [9], the NP criterion is employed for radar and sonar systems. 
Furthermore, the derivation of the optimal detectors depends on the assumptions made about the noise 
[1]. Given that UWAN is  dependent on the frequency [6, 10], the AWGN assumption is invalid, and 
UWAN is more suitably modelled as coloured noise [7, 8, 11].  
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2.2 Data Collection and Non-Gaussian Noise Model  
Field trials were conducted at Desaru beach (1° 35.169ʹ N, 104° 21.027′ E) to collect a noise data set 
and to study the statistical properties of underwater noise (Figure (1)). The signals were received at a 
frequency range of 7 Hz to 22 KHz using a broadband hydrophone (Dolphin EAR 100 Series). The 
measurements were obtained at depths from 1 m to 7m from the sea surface, which was at a depth of 8 
m. The wind speed was about 7 kn, and the surface temperature was around 27 °C [12]. 

  

Figure.1. Experiment test site conducted at Tanjung Balau, Johor, Malaysia. 

Figure (2) illustrates the time representation of the collected data at depths of 5 meters and 7 meters, 
and the impulsive nature of the noise can be clearly observed. 

 

(a) Time representation at 3 meters depth. 

 
(b) Time representation at 7 meters depth. 

Figure 2. Time representation of the UWAN at depths of 3 meters and 7 meters. 
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The amplitude distributions found from the collected data were compared with the Student's t 
distribution and Gaussian distribution using the distribution fitting tool in MATLAB. As shown in 
Figure (3), the comparison results show that the pdf of the underwater noise generally follows the 
Student's t distribution. Therefore, the UWAN does not validate an assumption of Gaussian distribution, 
and, clearly, the noise pdf distribution must be fitted with the t distribution. The Student’s t pdf is 
expressed as [13] 

𝜌𝜌𝑣𝑣,𝑑𝑑(𝑣𝑣,𝑑𝑑) =
Γ �(𝑑𝑑 + 1)

2� �

√𝜋𝜋𝜋𝜋Γ(𝑑𝑑 2� )
�1 +

𝑣𝑣2

𝑑𝑑
�
−(𝑑𝑑+1)

2�

 (7) 

where Γ(·) is the gamma function and 𝑑𝑑 is the degree of freedom that controls the dispersion of the 
distribution. The pdf represented in equation (7) has a zero mean and a variance equal to 𝑑𝑑 (𝑑𝑑 − 2)�  
for 𝑑𝑑 ≥ 2. 

 

(a) 3 meters depth. 

 
(b) 7 meters depth. 

 

Figure 3. Comparison of the amplitude distribution of the UWAN with the Gaussian distribution and t-
distribution. 

 

Table (1) specifies the degrees of freedom for different depths. The UWAN can be assumed to be 
stationary [17] for a short period of time, about a few seconds. 
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Table 1. Degree of freedom for different depth 

Depth 

(m) 

Analysis 

period (Sec) 

Degree of 

freedom (v) 

1 1.85 2.94 

3 1.26 2.91 

5 1.55 2.82 

7 1.12 2.8 

From Table (1), the degree of freedom is around 3. Analysis of the UWAN shows that its characteristics 
are not the same as for AWGN. The pdf of the UWAN follows a Student’s t distribution, in contrast to 
the assumption of Gaussian pdf proposed in a previous study [14].  

 

3. Signal Detection in Non-Gaussian Distribution Noise 

For optimum detector and near-optimum detection in non-Gaussian noise distributions, nonlinear 
detectors should be used. A locally optimal detector (LO) was thus designed to obtain such performance, 
and this was compared with conventional Matched Filter (MF). 

3.1 Matched Filter (MF) 
In the presence of a Gaussian noise, the MF detector is optimal for detecting a known signal. Many 
communication systems thus use this detector as a matched filter. The test statistic for the MF is 
specified by [1] 

 𝑇𝑇(𝑥𝑥) = �𝑥𝑥[𝑛𝑛]𝑠𝑠[𝑛𝑛]
𝑁𝑁−1

𝑛𝑛=0

 (8) 

where 𝑠𝑠 (𝑛𝑛) is the reference signal and 𝑥𝑥 (𝑛𝑛) denotes  observed data. The expected value (𝐸𝐸{𝑇𝑇;𝐻𝐻𝑖𝑖} for 
i=0, 1) and the variance of the test statistic (Var {𝑇𝑇;𝐻𝐻𝑖𝑖} for i=0, 1) are 

𝑇𝑇(𝑥𝑥) = � 𝑁𝑁
(0 ,𝜎𝜎𝑣𝑣2.𝐸𝐸𝑠𝑠)                             𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐻𝐻0

𝑁𝑁(𝐸𝐸𝑠𝑠 ,𝜎𝜎𝑣𝑣2.𝐸𝐸𝑠𝑠)                              𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐻𝐻1 
 (9) 

where 𝐸𝐸s is the signal energy and 𝑣𝑣𝑣𝑣𝑣𝑣(𝑣𝑣) is the noise variance that follows the t distribution as defined 
in Eq. 7. The false alarm probability (𝑃𝑃𝐹𝐹𝐹𝐹) is defined as 

P𝐹𝐹𝐹𝐹 = P(H1; H0) = 𝑃𝑃𝑟𝑟{𝑥𝑥[0] > 𝛾𝛾;𝐻𝐻0} = 𝑄𝑄 � 𝛾𝛾

�𝜎𝜎𝑣𝑣2.𝐸𝐸𝑠𝑠 �
1 2�
�                                            (10) 

where 𝛾𝛾 is the threshold value for a given 𝑃𝑃𝐹𝐹𝐹𝐹, and this threshold value is determined using 

𝛾𝛾 = 𝑄𝑄−1(𝑃𝑃𝐹𝐹𝐹𝐹). (𝜎𝜎𝑣𝑣2.𝐸𝐸𝑠𝑠 )1 2�  (11) 

The probability of detection (𝑃𝑃𝐷𝐷) is defined as 

𝑃𝑃𝐷𝐷 = 𝑃𝑃(𝐻𝐻1;𝐻𝐻1) = 𝑃𝑃𝑟𝑟{𝑥𝑥[0] > 𝛾𝛾;𝐻𝐻1} = 𝑄𝑄 �
𝛾𝛾 − 𝐸𝐸𝑠𝑠

(𝜎𝜎𝑣𝑣2.𝐸𝐸𝑠𝑠 )1 2�
� 

(12) 

By using equation (9) and equation (11) in equation (12), the following equation emerges [1]: 
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𝑃𝑃𝐷𝐷 = 𝑄𝑄 �𝑄𝑄−1(𝑃𝑃𝐹𝐹𝐹𝐹) −�

𝐸𝐸

𝑆𝑆

𝜎𝜎𝑣𝑣2
� (13) 

3.2 Locally Optimal Detector (LO) 
The locally optimal (LO) detector is used for signal detection in presence of non-Gaussian 

noise  ]15 ,16[ . This detector can be used for weak signals detection by using a nonlinear transfer 
function (NLTF) prior to an MF detector as illustrated in Figure (4). 

 

Figure 4. Schematic diagram of the LO detector for a known signal in non-Gaussian noise. 

 

The test statistic for the LO detector is assumed by [1, 3-5] 

𝑇𝑇(𝑥𝑥) = �𝑔𝑔(𝑥𝑥[𝑛𝑛])𝑠𝑠[𝑛𝑛]
𝑁𝑁−1

𝑛𝑛=0

 (14) 

where 𝑔𝑔(𝑥𝑥[𝑛𝑛]) is the NLTF that can be calculated from the pdf of the noise. Thus, 

𝑔𝑔(𝑥𝑥) = −
1

𝜌𝜌(𝑥𝑥)
 
𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑑𝑑

 (15) 

where 𝜌𝜌(𝑥𝑥) is the Student’s t-distribution pdf  as defined in Equation (7). The transfer function is: 

𝑔𝑔(𝑥𝑥) =
(𝑑𝑑 + 1)𝑥𝑥
(𝑑𝑑 + 𝑥𝑥2)

 (16) 

for 𝑑𝑑 = 3: 

𝑔𝑔(𝑥𝑥) =
4𝑥𝑥

(3 + 𝑥𝑥2)
 (17) 

A characteristic transfer function is illustrated in Figure (5).  
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Figure 5. Nonlinear transfer function for a locally optimal detector in t-distribution noise 
with 𝒅𝒅 = 𝟑𝟑. 

The mean value and variance of 𝑇𝑇(𝑥𝑥)under  𝐻𝐻𝑖𝑖 are [1, 5] 

𝑇𝑇(𝑥𝑥) = � 𝑁𝑁
(0 , 𝐼𝐼𝐸𝐸𝑠𝑠)                             𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐻𝐻0

𝑁𝑁(𝐼𝐼 𝐸𝐸𝑠𝑠 , 𝐼𝐼𝐸𝐸𝑠𝑠)                           𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝐻𝐻1  (18) 

where I is [1] 

𝐼𝐼 = �
� 𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑑𝑑𝑑𝑑 �
2

𝜌𝜌(𝑥𝑥)
𝑑𝑑𝑑𝑑

∞

−∞
 (19) 

The value of I specified in equation (18) is determined mathematically. For 𝑑𝑑 = 3, 

𝐼𝐼 = 52.9338� 𝑣𝑣2.�1 +
𝑣𝑣2

3
�
−4

𝑑𝑑𝑑𝑑
∞

−∞
 (20) 

𝐼𝐼 = 0.6667 (21) 

For any given 𝑃𝑃𝐹𝐹𝐹𝐹, the  𝑃𝑃𝐷𝐷 of the LO detector can be stated as [5] 

𝑃𝑃𝐷𝐷 = 𝑄𝑄�𝑄𝑄−1(𝑃𝑃𝐹𝐹𝐹𝐹) −�𝐼𝐼.𝐸𝐸𝑠𝑠� = �𝑄𝑄−1(𝑃𝑃𝐹𝐹𝐹𝐹) −�0.6667𝐸𝐸𝑠𝑠� (22) 
 

4. Results  

The performance of the LO detector in detecting a signal in additive UWAN was tested and compared 
with the detection performance of MF using Monte Carlo simulations with ten thousand repetitions for 
each energy to noise ratio (ENR). Throughout each repetition, the signals defined by Equation 1 to 
Equation 4 were added to the underwater noise for both types of signals, time-varying and time-
invariant. These signals are used in simulation as follows: 

• Fixed frequency signal with 500 Hz frequency 
• LFM signal with 400 Hz starting and 1500 Hz ending frequency 

For different ENRs, the simulations are repeated by changing the signal energy while keeping the noise 
power constant. In general, the ENR is defined as 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑑𝑑𝑑𝑑) = 10 log10 �
NA2

2𝜎𝜎𝑣𝑣2
� (23) 

Figure (6) illustrates the two detectors' performances over the range of ENRs of minus five to fifteen 
dB for a signal with a fixed frequency of 500 Hz with P𝐹𝐹𝐹𝐹 of 10−1 and 10−2  [5, 14]. The results show 
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that the LO detectors are clearly better than the MF detectors. The ENRs of the two detection methods 
used and the P𝐹𝐹𝐹𝐹 given a 𝑃𝑃𝐷𝐷 of 90 percent are recorded in Table 2. Clearly, the ENR of the LO is better 
than that of the MF, by 5.2 dB. 

TABLE 2. ENRs for various detection methods given a 𝑃𝑃𝐷𝐷 of 90 percent for a single tone 
signal with frequency 400 Hz. 

𝑷𝑷𝑭𝑭𝑭𝑭 LO MF 
0.1 5.8dB 8.1dB 

0.01 7.4dB 12.5dB 
 

 

(𝑎𝑎)𝑃𝑃𝐹𝐹𝐹𝐹 = 0.1 

 

(𝑏𝑏)𝑃𝑃𝐹𝐹𝐹𝐹 = 0.01 

Figure 6. Performances of the LO and MF detectors for the single-tone signal with 500 Hz frequency.  

(𝑎𝑎)𝑃𝑃𝐹𝐹𝐹𝐹 = 0.1. (𝑏𝑏)𝑃𝑃𝐹𝐹𝐹𝐹 = 0.01. 
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Figure (7) illustrates the two detectors' performances over the range of ENR from minus five to fifteen 
dB for the LFM signal at a fixed frequency of 500 Hz with P𝐹𝐹𝐹𝐹 of 10−1 and 10−2  [5, 14]. The results 
show that the LO detectors are clearly better than the MF detectors. The ENRs of the two detection 
methods used and the P𝐹𝐹𝐹𝐹 given a 𝑃𝑃𝐷𝐷 of 90 percent are recorded in Table 3. Clearly, the ENR of the LO 
is better than that of the MF, by 4.2 dB. 

 

TABLE 3. ENRs for various detection methods given a 𝑃𝑃𝐷𝐷 of 90 percent for LFM signal 

𝑷𝑷𝑭𝑭𝑭𝑭 LO MF 
0.1 5.3dB 7.8dB 

0.01 8.1dB 12.3dB 
 

 

(𝑎𝑎)𝑃𝑃𝐹𝐹𝐹𝐹 = 0.1 

 

(𝑏𝑏)𝑃𝑃𝐹𝐹𝐹𝐹 = 0.01 

Figure 7. The performance of the LO and MF detectors for the LFM signal. 
(𝑎𝑎)𝑃𝑃𝐹𝐹𝐹𝐹 = 0.1. (𝑏𝑏)𝑃𝑃𝐹𝐹𝐹𝐹 = 0.01. 
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5. Conclusion 

UWAN in tropical shallow waters demonstrates emphasised impulsive behavior and thus does 
not track a normal distribution. The analysis of field data measurements shows that the probability 
density function of noise successfully fits the Student’s t distribution with three degrees of freedom. A 
knowledge of noise statistics assisted in the design and improvement of a suitable LO detector, which 
detector performed better than the conventional MF detector, as indicated by the detection 
probability(𝑃𝑃𝐷𝐷). For a time-varying signal, specifying a false alarm probability of 0.01 and a 𝑃𝑃𝐷𝐷 value 
of 90%, the energy-to-noise ratios (ENR) of the LO were better than the MF by 4.2 dB, and for fixed 
frequency signals, the LO was better than the MF by 5.2 dB. The near-optimal performance of the LO 
detector makes it an attractive tool for sonar and underwater digital communication. 
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