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Abstract. Heavy metals such as Pb(II) are harmful to both the environment and human health as they are both 
toxic and stable. Bentonite clays contain Montmorillonite, which is a nano-porous and nano-structured mineral 
that can act to remove metals. In these experiments, natural bentonite S1 was activated using sulfuric acid solutions 
under various conditions with a range of Liquid to Solid ratios (L/S), Temperatures (T), Times (t) and 
Concentrations (C). The activated samples S2 (L/S= 16 mL/g, T= 95 °C, t= 4 h, C=5 M) and S3 (L/S= 16 mL/g, 
T= 95 °C, t= 6 h, C=0.5 M) showed the highest and the lowest amounts of Pb(II) removal, respectively. The 
characterisation of natural and acid-activated bentonites in terms of Pb(II) separation applications were examined 
using Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), X-Ray fluorescence (XRF), 
Brunauer-Emmett-Teller (BET) surface area measurements, and Fourier Transform Infrared Spectroscopy (FTIR). 
Metal removal experiments were conducted using a suspension of 0.3 g suspended in 25 mL Pb(NO3)2 solution 
under fixed solution concentrations of 2,000 mg/L. The suspensions were thoroughly mixed for 24 hours at 250 
rpm. The results showed the removal capacities of samples followed the order of S2 > S3 > S1, and suggested that 
the prevailing Pb(II) removal processes were adsorption and ion exchange. 

1. Introduction 
 Bentonite clays, which contain montmorillonite as their dominant mineral, are hydrated 2:1 type 
aluminium silicates that contain an alumina octahedral layer sandwiched between two tetrahedral layers 
of silica in a nanocrystalline structure [1], [2]. Bentonites are used in many industrial applications, 
including in bleaching processes, as dispersants in drilling fluids and cements, in cosmetics, and in paints 
[3], [4]. One of the important applications of bentonites is metal adsorption, which is very useful in 
many industries, as it acts to remove heavy metals such as lead, zinc, nickel, uranium, copper, cobalt, 
and cadmium. 

The existence of toxic heavy metals in industrial activities has become an important environmental 
concern. Lead (Pb) is one of the most fatal poisonous metals that regularly enters the environment, 
arising from various preliminary sources and industrial, metallurgical, mining, jewellery, tanning, 
chemical, electrical, and electronic activities [5], [6], [7], [8]. Certain heavy metals, including lead, can 
be dangerous to aquatic animals and plants, as well as being easily absorbed into the human body, and 
as such they are a prime cause of illnesses in humans such as anaemia, muscular cramps, kidney 
malfunction, nausea, renal degradation, skeletal deformity, and cardiovascular diseases [8], [9]. 

Many technologies have been developed to remove toxic heavy metals from solutions in recent 
decades, including ultrafiltration, reverse osmosis, chemical precipitation, solvent extraction, electro 
dialysis, oxidation, reduction, ion exchange and adsorption [8], [10]. Adsorption has been proved to be 
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one of the best methods for removing toxic heavy metals such as lead, as it is an economical and feasible 
method in most situations. Bentonites act as adsorbents for the removal of lead, and they are low-cost, 
have low hydraulic conductivity, are hydrophilic, and have micro-porous structures which have high 
adsorption capacities useful in the separation process for lead [7], [8], [9], [10], [11]. 

Bentonite is one of the most frequently chosen low-cost adsorbents for the removal of heavy metals. 
Bourliva et al. (2015) studied the adsorption of metal systems by bentonites and showed that the 
adsorption capacity of bentonite for Pb(II) was 85.47 mg g-1, demonstrating that bentonite displayed 
high selectivity toward Pb(II). A compacted mixture of bentonite has also been proposed as a buffer or 
backfill material for the disposal of high-level radioactive waste as bentonites are stable to irradiation 
[12]. Chen et al. showed that moisture quickly travelled through a bentonite/sand mixture infiltrated 
with Pb(II) solutions and that the amount of bentonite content influenced Pb(II) retention. The amount 
of bentonite present can be determined through a combination of the instrumental and experimental tests 
[13]. Nithya and Sudha studied the removal of Pb(II) using chitosan-g-poly(butyl acrylate)/bentonite, 
with the bentonite acting to improve the stability of chitosan. Adeyemo et al. and Khalfa et al. found in 
their works that acid activation improved the adsorption capacity of bentonites in dyes and Cr(IV) [14], 
[15]. Chemical modification such as acid-activation is one of the best techniques to improve the 
physicochemical properties of bentonites in terms of removing Pb(II), and is thus discussed in this paper.  

The aim of this study is to determine the best bentonite sample for removing Pb(II) through a 
combination of laboratory and instrumental tests on currently-used bentonite samples from different 
regions of Iran. The new approach seeks new insights into the characterisation of these specific samples 
and aims to interpret the specific results to gain an understanding of the physio-chemical properties of 
bentonites for the separation of Pb(II). The selectivity to Pb(II) of nanoporous clay is also investigated. 
The novelty of this work is the study of the Pb(II) separation process using a combination of laboratory 
and instrumental tests. 
 
2. Material and methods 
2.1. Materials and treatments 
Natural bentonite, S1 (from deposits of Mahrijan, Isfahan, Iran), and two acid-activated forms were 
studied. Lead(II) nitrate (Pb(NO3)2, 99.5%) and sulfuric acid (H2SO4, d=1.84, 95-98%) were purchased 
from Merck Chemicals. 
 
2.2. Sampling, drying and ball-milling treatment 
The commercial natural bentonite chunks were air dried and ground on site. Then, the bentonite was 
sent to the laboratory where the natural sample was further oven dried at 110 °C overnight and ground 
using a ball mill. The sample was powdered to less than 1.19 mm particle size (Sieve Mesh No. 16) for 
the acid activation process. 
 
2.3. Acid activation of bentonite 
Homogeneous suspensions of the bentonite sample with a liquid/solid ratio 16 mL/g (50 gr Bentonite in 
800 mL liquid) were prepared in which the 800 mL liquids had various concentrations of 0.5, 1, 1.5, 2, 
3, 4, 5, 6, 7, and 8 M of sulfuric acid (H2SO4, d= 1.84 and 95-98% purity) mixed at 95 °C in a four-
necked 2-L glass reactor. The suspensions of bentonite in H2SO4 solutions were mixed for 2, 4, and 6 
hours. At the end of the acid-activation process, the suspensions were filtered and washed with distilled 
water to achieve an SO4

2- ion-free filtrate. The activated samples were then dried in an oven at 110 °C 
for 16 hours and ground to pass through a 200-mesh (75 µm) sieve.  
The best and worst Pb adsorption results were obtained for S2 (L/S= 16 mL/g, T= 95 °C, t= 4 h and C=5 
M) and S3 (L/S= 16 mL/g, T= 95 °C, t= 6 h and C=0.5 M), respectively. 
 
2.4. Pb removal procedure 
To show the Pb adsorption capacity of bentonites, batch experiments were conducted using suspensions 
of 0.3 g absorbent in 25 mL of Pb(NO3)2 solution in distilled water with the solution concentration 
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fixed at 0.01 N. The suspensions were thoroughly mixed in a shaker (GALLENKAMP, England) for 24 
hours at 250 rpm in 100-mL-polyethylene-capped bottles to eliminate the effects of the 24-hour 
equilibrium time. The bottles and glassware were washed with distilled water; this was followed with 
an acetone wash and the vessels were dried before use. 

Separation was accomplished using a filter paper and vacuum pump setup. A filtrate was used to 
determine the amount of adsorbed Pb along with ICP (Spectra AA200 model, Varian Corp., Victoria, 
Australia) adsorption tests using an air-acetylene flame. Analytical calibration was made with aqueous 
standards 2, 5, 10, and 20 ppm of Pb(II) from a 1,000-ppm stock solution. 
The values of the distribution ratio in mLg-1 were calculated from eq. 1: 

            
C -C Veq0K = ×d C meq

              (1) 

where C0 and Ceq are the initial and equilibrium concentrations (mgL-1), V is the aqueous phase 
volume (mL), and m is the sorbent mass (g). 
The adsorption percentage (R) and capacity (Γ) were calculated from eqs. 2 and 3, respectively: 

          eq 0

100× Kd%R = = (1- C / C )×100
V

K +d m

          (2) 

          0Γ = K × C = (C - C )× V meq eqd           (3) 

where R is the percentage of adsorption, Γ is the adsorption capacity, C0 is the initial concentration 
(gmL-1), C is the equilibrium concentration (gmL-1), V is the aqueous phase volume (mL), and m is the 
adsorbent mass (g). 

 
2.5. XRD analysis 
The samples were characterised using X-ray diffraction (XRD) diffractometer (PW 1800, Philips, 
Netherlands) equipped with a graphite secondary monochromator using Cu–Kα radiation in the 2θ from 
2.010° to 50°; the step of 2θ was 0.020°. The samples were first dried and then powdered to less than 
75 µm before XRD analysis. 
 
2.6. XRF analysis 
X-Ray Fluorescence was carried out using Oxford ED 2000 model equipment (England) along with 
Xpertease software to determine the chemical changes in the samples. 
 
2.7. BET Surface area and pore size analysis 
The specific surface areas and pore size distributions of the natural and acid activated bentonites were 
measured using a Quantachrom (Nova 2000e, Florida) volumetric N2 adsorption instrument. The 
adsorption temperature of N2 was 77.3 K at relative pressure up to P/P0~0.95. Ambient nitrogen, 
oxygen, and other gases adsorbed into the surface and open pores of the bentonite samples were 
completely removed at low pressure and T = 100 °C for 8 hours before any measurements were taken.  
 
2.8. Infra-Red Spectroscopy 
IR spectroscopy of the samples was performed using a Fourier Transform Infra-Red (FTIR) spectra in 
the KBr method. The bands were recorded between 4,000 to 400 cm−1 along with a spectral resolution 
of 4 cm−1 and a Bruker (VECTOR 22, Massachusetts) spectrometer instrument was used. A small 
amount, 1 mg, of each clay sample was mixed with 200 mg of KBr and each mixture was dried at 110 C̊ 
overnight in the oven to remove any free water. 
 
2.9. Transmission Electron Microscopy 
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The morphologies of the natural and acid activated bentonite samples were analysed using a Philips type 
(EM 2085S, Eindhoven) Transmission Electron Microscope (TEM). Holey carbon-coated grids were 
applied to prepare the samples, and the maximum electronic accelerator voltage was 100 kV. 
3. Results 
3.1. Pb removal 
Table 1 shows the calculated Pb(II) distribution coefficient, adsorption percentage (adsorption 
efficiency), and adsorption capacity of samples S1, S2, and S3. The measured parameters allow 
comparison of the Pb adsorption properties of raw bentonite (S1), and the acid-activated samples (S2 
and S3) as listed in Table 1. 

 
Table 1. Distribution coefficient, adsorption percentage, and adsorption capacity 
of samples. 

Sample Distribution 
coefficient (mLg-1) 

Adsorption percentage 
(Dimensionless) 

Adsorption capacity 
(Dimensionless) 

S1 6558 98.74 85 

S2 63250 99.86 177 

S3 45939 99.82 165 

 
The results demonstrate that the order of distribution coefficient (Kd), adsorption percentage (R) and 

adsorption capacity (Γ) for these samples is S2> S3> S1.  
 

3.2. XRD analysis 
The mineralogical results of natural bentonite (S1), best Acid-activated (S2), and worst Acid-activated 
(S3) samples (as obtained with XRD) are shown in figure 1. The peaks of montmorillonite (MMT) and 
quartz (Q) phases are at 2θ, or about 7, 20 and 21, and 26 and 28. Quartz is the major non-clay mineral 
in all samples, though the quartz peak intensity decreases in S1 and increases in S2. 
 

 

Figure 1. XRD patterns of S1 (natural) and S2 and S3 (acid-activated) samples.3.3. XRF analysis 
The XRF analysis results of natural (S1), the best Acid-activated (S2) and the worst Acid-activated (S3) 
samples are given in Table 2. The results indicate that S2 had a higher amount of SiO2. The amount of 
Na2O in S2 and S3 was zero, and S2 and S3 also had lower amounts of MgO and Al2O3. The value of 
CaO in sample S3 was lower than those seen in S1 and S2. 
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Table 2. The XRD analysis results of the S1 (natural), S2 and S3 (acid-activated). 

Analyte (Wt%)  O2Na MgO 3O2Al 2SiO O2K CaO  a TFeO Others 

S1 0.8 1.8 18.3 74 0.2 0.8 2.2 1.9 

S2 0.0 1.1 11.2 84.2 0.1 0.9 1.1 1.4 
S3 0.0 1.5 17.0 76.9 0.2 0.3 1.8 2.3 

a TFeO = FeO + Fe2O3 
 
3.4. BET surface area and pore size analysis 
The specific surface area of the samples was calculated using both single and multi-point BET analysis. 
The external surface area of the samples was measured using the BET method since the electrically 
neutral molecules of N2 could not penetrate into the pores. As Table 3 indicates, S1 and S2 had the 
minimum and maximum surface areas, respectively.  

 
Table 3. BET surface area (single and multi-point) and pore size analysis (BJH method). 

 
 
 
 
 
 
 
 
Figure 2 shows the amount of adsorbed nitrogen volume plotted against relative equilibrium pressure. 

This plot corresponds to type II N2 adsorption isotherms and type III adsorption-desorption hysteresis. 
 

 

Figure 2. Absorbed nitrogen volume against relative equilibrium pressure. 

 
Bentonites are nano-structured, nano-porous clays. Pore size distribution was obtained using BJH 

analysis. Bentonite samples have mainly meso and nano pores, and Table 3 shows that S1 had the 
maximum and S2 the minimum average pore diameter. The plot of pore volume versus pore diameter is 
shown in figure 3. Increase in pore diameter leads to an increase in volume of adsorbed nitrogen, and 

Sample 
Name 

ABET (m2/g) 
Single Point BET 

ABET (m2/g) 
Multi Point BET 

Average Nano Pore Diameter (nm) 
 BJH Method 

S1 22.2170 22.63 3.613 

S2 119.9080 122.4 3.574 
S3 70.8544 71.92 3.608 
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the increasing trend in the amount of adsorption volume of nitrogen for sample S2 is greater than those 
of S1 and S3. 
 

 

Figure 3. Pore volume versus pore diameter 
 
The BJH analysis in figure 4 shows the diameters of the samples as being between 3 and 5 nm and 

the pore volumes of samples S1, S2, and S3 were 0.0014, 0.0068, and 0.0025 mL/g, respectively. Sample 
S2 displayed maximum pore volume. 

 

 

Figure 4. BJH pore diameter analysis of the sample S1, S2 and S3 
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3.5. Infra-Red Spectroscopy analysis 

FTIR is one of the most useful methods for characterising bentonite composition. Table 4 indicates the 
reference and bands of samples S1, S2, and S3 and figure 5 shows the FTIR curves. The width absorption 
bands at 3,623 cm-1 demonstrate the OH stretching bands of S1, S2, and S3, which are typical for 
montmorillonite hydroxyl groups coordinated with Al3+ cations. The bending mode of Mg•OH•Al and 
Fe•OH•Al appeared at 3,422 cm-1. Absorption at approximately 1,639 cm−1 demonstrates H2O 
corresponding to the H•O•H deformation. An Al•Al•OH asymmetric stretching mode appeared at 917 
cm−1. The peaks at 793 cm–1 were assigned to a platy form of disordered tridymite. The adsorption 
spectrum at 725 cm–1 in the spectrum of montmorillonite suggests the presence of Free or Amorphous 
Silica. The Al•O•Si bending mode appeared at 524 cm-1 and the absorption at 692 cm-1 demonstrates the 
presence of quartz. The peak at 466 cm-1 was assigned to Si•O•Si stretching. 
 

Table 4. FTIR band assignments for S1, S2 and S3 and the reference bands. 
S1 S2 S3 Assignments Maxima(cm-1) 

474 467 458 Si•O•Si Bending 466 
527 532 520 Al•O•Si Bending 524 
696 696 696 Quartz 692 
718 717 - Free or Amorphous Silica 725 
800 800 786 Platy form of Tridymite 793 
918 922 917 Al•Al•OH Bending 917 

1643 1636 1638 Hydration, OH Bending 1639 
3430 3427 3422 OH Stretching, Hydration 3422 

 

 
Figure 5. FTIR curves. 

 
3.6. Transmission Electron Microscopy analysis 
The morphology and size of the samples were analysed using TEM (figure 6). Figures 6a, 6b, and 6c 
correspond to samples S1, S2 and S3, respectively. Figure 6 shows that all samples had aggregating 
particles, though S2 had a smaller particle size than the other samples. 
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Figure 6. The morphology and size of samples using TEM: (a) S1, (b) S2, and (C) S3. 
 
4. Discussion 
 The chemical, physical and structural properties of the bentonites are considerably changed by applying 
bentonite modification methods such as acid activation. The changes include both mineralogical and 
chemical compositions; surface area and pore size distribution; chemical bonds' shape and structure; and 
the amount of metal removal, in accordance with the other alterations. The results of the modifications 
are thus discussed using instrumental analyses, as is the metal removal process. 

Figure 1 shows the XRD patterns of S1, S2, and S3. The major diffraction peaks at 2θ, about 7, 20 
and 35, demonstrate the montmorillonite and at 2θ about 21, 26, 28, and 50 show the quartz phase. The 
intensity of montmorillonite and quartz peaks was increased in sample S2 through acid activation 
compared with S1 and S3, as illustrated in figure 1. The acid activation decreased or eliminated the 
intensity of some peaks in sample S3, as the quantity of impurities decreased.  

The XRF analysis of S1, S2, and S3 samples is given in Table 3. S1 had the maximum amount of 
Al2O3, indicating the highest amount of montmorillonite, as the XRD results showed that there were no 
other phases with Al2O3. The amount of Na2O in S2 and S3 reached zero because of isomorphic 
substitution of the Na+ of montmorillonite with the H+ of the sulfuric acid. The value of CaO in sample 
S3 was lower than those in S1 and S2 because the power of acid activation of sample S3 was lower than 
in S2 and the natural S1. 

The FTIR analysis helped to identify the chemical structure of the samples. For the acid-activated 
samples, S2 and S3, the slight reductions in the peak intensities at 1,639 and 3,422 cm-1 correspond to 
dehydration of OH bending and stretching bands. The significant decline in band intensity at 3,623 cm-

1 indicates the development of the dehydroxylation process for S3. The intensity of the quartz bending 
vibration bands at 692 cm-1 is almost unchanged in all samples. The decline in absorption band 
intensities of Si•O•Si, Si•O•Al and Al•Al•OH at 466, 524, and 917 cm-1 denote decreases in 
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montmorillonite amount for sample S3. The amount of SiO2 increases in response to the decrease in 
montmorillonite wt%, and the XRF analysis confirms the increase of SiO2 wt% for S3. 

Figure 6 shows the TEM graphs of the submicron-sized plate-like particle morphology of S1. A 
higher number of finer particles could be observed in S2, however, which has relevance to Pb(II) 
adsorption, as it makes sample S2 an adsorbent with a higher specific surface area than the other samples. 

The adsorption–desorption isotherms of the natural and acid activated samples (figure 2) show a 
single modal pore size distribution centred at 3.5 nm. Acid activation significantly increased the nano 
and meso pore size distribution seen in acid-activated S2 and S3 to around 3.5 nm modal. Most of the 
pores are in the mesopore region. Macropores were also observed for the best-activated sample, S2. The 
highest surface area of the best acid activated sample was related to the micro and macropores produced 
after acid activation, and acid activation also increased the number of pores for both activated samples. 

The IUPAC classifications of the N2 adsorption/desorption isotherms of the natural and acid-
activated samples indicated that they were type II isotherms, and both activated samples exhibited H3-
type hysteresis, including narrow pore size distribution, as shown in figure 2. Type III hysteresis is 
known to exist in solids consisting of agglomerates or aggregates of particles forming slit-shaped pores 
(plates or edged particles such as cubes), with no uniform size and/or shape. Hysteresis is usually due 
to differing behaviours in adsorption and desorption. 

Adsorption studies of Pb(II) show that the adsorption ability of natural S1 is lower than that of acid-
activated S2 and S3 (Table 1). Amongst the acid-activated samples investigated here, sample S2, which 
was activated under L/S= 16 mL/g, T= 95 °C, t= 4 h, and C=5 M conditions, had the highest adsorption 
ability. The intensities of montmorillonite and quartz peaks in the XRD patterns of S2 indicated the 
highest amount of montmorillonite and the lowest amount of quartz impurities within all samples, aiding 
Pb(II) removal. The FTIR bands for montmorillonite and quartz confirmed this claim. The results of 
XRF confirmed the increase in montmorillonite content of S2, as the unsuitable impurities decreased in 
S2 compared to S3. Figure 6 reveals that S2 had finer particles than the other samples, giving S2 the 
highest surface area in accordance with BET studies. The single and multi-point BET results show that 
S2 had 119.9080 and 122.4 m2/g, respectively. The increased surface area provided additional available 
sites to adsorb metals. Figure 4 also shows that the numbers of micro, meso, and macro-pores were 
highest for sample S2. Pb2+ diameter is 2.38 nm, which means that the Pb2+ cations can be easily 
adsorbed on internal surfaces or pores of montmorillonites as well as on the external surfaces. 

5. Conclusions 
Acid-activation of nanoporous bentonites is a convenient, useful, and economical method for 

removing toxic and harmful heavy metals such as Pb from aqueous solutions. XRD, XRF, BET, FTIR, 
and TEM results were used to explain the physio-chemical and structural changes in samples to explain 
the improved adsorption capacities of natural bentonite after acid activation. 

The XRD patterns showed that acid activation decreases or eliminates the intensity of impurity peaks. 
The XRF studies suggested that the amount of Na2O in S2 and S3 reached zero because of isomorphic 
substitution of Na+ in the montmorillonite with the H+ of the added sulfuric acid. The FTIR study of S3 
showed an increase in the amount of SiO2 after acid activation, which was confirmed by XRF analysis. 
Adsorption studies of Pb(II) showed that sample S2, which was activated under the L/S= 16 mL/g, T= 
95 °C, t= 4 h and C=5 M conditions, had the highest adsorption ability. 
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