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Abstract. Shape memory alloys are smart materials that can remember their shape after being
deformed. This is due to their unique properties, shape memory effect and super-elasticity,
which occurs because of phase transformation. High temperature shape memory alloys are
being developed in order to increase the application area of shape memory alloys. There is an
increasing demand of shape memory alloys, which can be used in high temperatures
environments such as in aerospace, actuators, sensors in the automotive industry. The first-
principle approach was employed to investigate the effect of ternary alloying with Ru, Co, Cu,
Zr and Hf on the equi-atomic B19 TiPt alloy. The supercell approach based on the B19 TiPt
structure was used to construct various compositions containing a third element with reduced
Pt content, and evaluate their thermodynamic and mechanical stability. The Ru, Co and Cu
calculations were performed to compare their effects on the TiPt relative to Zr and Hf addition.
It was found that partial substitution with Ru was the most stable structure as compared to the
Hf, since it displayed the lowest heats of formation. Their martensitic transformation
temperature increased due to their lowest C' shear modulus. However, the addition of Cu
reduced the transformation temperature of the TiPt. All structures were found to be completely
anisotropic.

1. Introduction

Shape memory alloys (SMAs) are used in a wide range of industrial applications, such as medical,
actuators, robotics, energy and aerospace, due to their unique properties, shape memory effect (SME)
and pseudo-elasticity which occurs as a result of phase transformation [1]. Recently, high temperature
shape memory alloys (HTSMAs) have been investigated in order to increase the application areas of
shape memory alloys. A number of alloying elements such as Pt, Pd, Hf and Zr have been studied in
the attempt to increase the transformation temperature of NiTi (373 K). The NiTi-Pt and NiTi-Pd was
reported to be effective in increasing the transformation temperature of the NiTi binary [2, 3].
However, the martensitic transformation temperature of these alloys remains below 830 K. TiPd and
TiPt at equi-atomic have a high temperature phase identified as the cubic B2 austenite and low
temperature phase as orthorhombic B19 martensite. They undergo phase transformation from B2
phase to B19 phase at 850 K and 1300 K [4]. TiPd have poor shape recovery of ~10% after
deformation at 773 K, due to low strength at high temperature causing plastic deformation during
stress application [5]. TiPt based alloys exhibit very low SME due to low critical stress for slip
deformation compared to the stress required for martensitic transformation (MT) [6]. Interestingly the
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alloys have the potential to be used for much higher-temperature shape memory applications due to
their high martensitic transformation Tm if their shape memory properties can be enhanced [7, 8].

Numerous attempts to enhance the mechanical properties of TiPt have been reported by adding
elements such as Ir, Co, Ru, Zr and Hf [9, 10]. The shape recovery ratio of TiPt-Ir remained lower
around 10% [11, 12]. Co, Ru, Zr and Hf addition improved the shape recovery ratio to between 40%
and 60% [13]. Among these alloying metals, Zr and Hf were found to be most effective to enhance the
shape memory recovery ratio. In this work, density functional theory (DFT) based technique was used
to study the effect of the third element Ru, Co, Cu, Zr and Hf on the B19 TiPt-M system (shown in
Figure 1). The stabilities of the TisoPtsoxMx for x=5 were investigated by studying the heats of
formation and elastic properties of the structures. The calculations revealed Ru is the most
thermodynamically stable addition as compared to the other structures. It will be shown that the Ru
addition is more preferential, to contribute as HTSMAs.
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Figure 1. The atomic arrangement (a) Unit cell of B19 TiPt system with a space group Pmma. (b)
Supercell for B19 TiPt-M structure.
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2. Methodology

The calculations were carried out using the ab initio DFT in the Vienna ab initio Simulation Package
(VASP) code [14, 15] with the projector augmented wave (PAW) [16]. An energy cutoff of 500 eV
was used, to achieve a good convergence of the parameters. We have used the generalized gradient
approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional [17].
The k-spacing of 0.18 for B19 TiPt was used according to Monkhorst and Pack [18].

3. Results and Discussion

3.1. Structural and Thermodynamic Properties

In Tablel, the calculated equilibrium lattice parameters of the B19 TisoPtssMs are shown where M= Ru,
Co, Cu, Zr, and Hf. The calculated results show that Ru, Co, and Cu decrease the equilibrium lattice
parameter of the system, due to the atomic radii of Cu (135 pm) and Co (135 pm) being equal to that
of Pt (135 pm), Ru being less than both Ti and Pt. The lattice parameters of both Zr and Hf increased
minimally; this might be due to the larger atomic radii of Zr (155 pm) and Hf (155 pm) relative to Ti
(140 pm) and Pt (135pm), respectively. Ru has a lower density of 12.37 g/cc than Pt (21.45 g/cc), the
atomic radii of Ru is also lower (130 pm) than both Ti and Pt, but high in melting point of 2607 K.
This attributed to Ru having lower lattice parameters. Similarly, the partial substitution of Co on Pt
sub-lattice also reduced the lattice parameters of TiPt [19]. Therefore, the lattice parameter depends on
the type of the alloying or third element [20]. The densities of both Zr and Hf are higher than that of Ti,
which means that partial substitution of Ti with Zr or Hf will increase the density of the equi-atomic
TiPt shape memory alloys.

Table 1. The equilibrium lattice parameters of B19 TiPt and TisoPt4sMs (M= Ru, Co, Cu,
Zr and Hf) ternaries.
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Structures TisoPtso Ti50Pt45M5 (M= Ru, Co, Cu, Zr and Hf)
a=4.618

(desoy (4] A5T9 AS6T 4611 4660  4.653

Lattice Parameters (A) 12;2853)7 2805 2778 2768 2817 2819
c=4.891

(4.940) 4852 4860 4.862 4849 4846

A (eV/atom) (:8'323) -0.864 -0.851 -0.834 -0.807 -0.804

The heats of formation (AHy), of the intermetallic phase is calculated according to the relation [21],

AHy = E™* — [(1 = x)ET!  +xETt, ], (1)

solid

where ETt, E Zf) jig and E f éli 4 are the total energies of the alloy, elemental Ti and Pt in their respective

ground-state crystal structure; respectively whereas x and /-x refers to the fractional concentrations of
the constituent elements.

In Figure 2, we present plots of the predicted TisoPtssMs heats of formation for analysis. Ru
substitution has the lowest value of heats of formation compared to Co and Cu dopants with Zr and Hf
having the largest values. Co and Cu are more stable in comparison to Zr and Hf. Therefore, Ru is
considered to be the most stable substitution with the value -0.8640 eV/atom.
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Figure 2. Heats of formation of TisoPtssMs (M= Ru, Co, Cu, Zr and Hf) alloys.

3.2. Elastic Properties

The accurate calculation of elasticity is crucial to gain insight into the mechanical stability and elastic
properties of compounds. Their elastic constants depend on the type of lattice i.e for an orthorhombic
crystals; there are nine (Cii, Cx, C33, Ciz, Ci3, C23, Cas, Css, Ces,) independent elastic constants,
respectively. This method has been successfully used to study the elastic properties of a range of
materials including metallic systems [22].

For orthorhombic crystal, the mechanical stability conditions are given by [23].
Cii+Ci2+C33+2C12+2C13+2C23 >0, Coz + C33 —2C13> 0, C11 > 0,
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Cn2>0,C33>0,Cas> 0, Cs5> 0, Ces> 0. 2)

The elastic constants and moduli for doped B19 TisoPtso-xMx structures are listed in Tables 3. The
elastic constants were evaluated to observe the effect of ternary addition for Ru, Co, Cu, Zr and Hf
concentrations of 5 atomic percent. The shear modulus (C’) for all the ternaries was positive, with Zr
having the lowest value and Ru the largest, which translates to higher transformation temperature. The
positive shear suggests that all the ternaries satisfy all conditions of mechanical stability of an
orthorhombic crystal. Furthermore, anisotropic ratio (less micro cracks in the material), approaches
unity (A=1) for all structures which indicates a strong correlation between Cass and C' shown in figure
3. Considering that the shear modulus represent the resistance to plastic deformation and the bulk
modulus represent the resistance to fracture [23], the Pugh ratio (B/G) was calculated and evaluated to
determine the ductility and brittleness of the structures. The structures were observed to be ductile
since all the structures were greater than the critical value of 1.75 [24]. The calculated young (E)
moduli suggest that the Ru is least stiff material than Cu, which correlates greatly with C' values.
Therefore, Ru was found to be the most stable substitution.

Table 2. The elastic properties Cij (GPa) of the TisoPt4sMs (M= Ru, Co, Cu, Zr and Hf) ternaries and
their anisotropy (A).

Ti, Pt, M, (M= Ru, Co, Cu, Zr and Hf)

Elastic Constant C; (GPa) | TiPt[8] Ru Co Cu Zr Hf
C, 319 322 312 312 289 290

C, 133 138 143 135 133 130

C, 152 153 145 139 138 137

C,, 361 346 356 357 322 306

C,, 112 115 109 112 105 104

C,, 317 310 309 315 296 297

C,, -60 49 58 61 59 59

Css 57 51 55 59 57 56

Ces 65 60 66 64 67 67
C'=(C,,—C,,)2 93 92 85 89 78 80
A=2C /(C, —C)) 0.7 0.7 0.8 0.7 0.9 0.8
A,=2C,/(C, +C,,—2C,) 0.7 0.3 0.4 0.4 0.4 0.4
A=C,/C 0.9 0.8 0.9 1.0 0.9 0.9

Shear (G) 67 72 74 70 70

Bulk (B) 199 197 195 184 181
B/G 2.97 2.74 2.64 2.63 2.59

Young (E) 180 192 198 187 186

The thermal coefficient of linear expansion (o) with temperature is evaluated in Figure 4. The Ru is
observed to have decreased bond length corresponding to lower value of a followed by Co, which
indicate that the ternaries have higher melting points. On the contrary the higher values of a indicates
that the structures expanded more, which was observed for both Zr and Hf, respectively. It can also
been seen from the plot that the higher the value of o, implies reduced the transformation temperature.
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Figure 3. The graph of thermal coefficient of linear expansion against temperature for TisoPtssMs
(M=Ru, Co, Cu, Zr and Hf) alloys.

4. Conclusion

First principle approach was used to study the mechanical stability of the B19 TisoPtssMs (M= Ru, Co,
Cu, Zr and Hf) atomic composition. The mechanical properties of the ternary structures were
investigated using the supercell approach. The thermodynamic stability for the ternary system was
investigated by partially substituting some of the Pt with M, M= Ru, Co, Cu, Zr and Hf. It was
observed that TisoPtssRus is the most stable structure, with the expansion of TisoPtssZrs and TisoPtssHfs
being the least stable structures. We found the correlation with regard to mechanical stability of the
ternaries (C' being positive), the competition between TisoPtssRus and TisoPtssCos gave rise to Co
substitution being the most mechanically stable ternary structure. It was also observed from the
thermal coefficient of linear expansion that TisoPtssZrs and TisoPtssHfs reduced transformation
temperature more than TisoPtasRus and TisoPtssCos.
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