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Abstract. In this paper, we present an optimized landmark distribution method for mobile 

robot visual homing technology. To satisfy the equal distance assumption for feature-based 

homing algorithms, the proposed method eliminates the low-quality features according to the 

image pixel distance difference and the scale information. Finally, a near-ideal distribution of 

the landmarks can be obtained. We take the feature-based average landmark vector (ALV) 

algorithm as the example, and prove the effectiveness of the proposed method by the 

experiments. 

1. Introduction 

Visual homing is an attractive technology in the field of autonomous mobile robot navigation [1]. 

Using visual homing algorithms, the robot compares the panoramic image captured at its current 

location with the pre-stored goal image captured at the home location, and calculates the home vector 

to guide the robot to move towards the destination [2]. In contrast to traditional vision-based robot 

navigation methods (such as visual SLAM [3]), visual homing does not need any localization and 

mapping, but only the direction controlling the robot’s movement. Therefore, visual homing can 

greatly reduce the calculation amount while maintaining high navigation precision [4]. 

According to the different input forms, visual homing can be broadly divided into two categories, 

including image-based homing and feature-based homing. Image-based homing usually uses the image 

pixels from the panoramic images as landmarks, such as warping [5] and descent in image distance 

(DID) [6]. Feature-based homing usually uses the scale-invariant features obtained by the feature 

detection and matching algorithms (SIFT [7] and SURF [8]) as landmarks, such as average 

displacement vector (ADV) [9] and average landmark vector (ALV) [10]. 

The above visual homing algorithms have proved their effectiveness to guide the robot to the 

destination, but almost all the homing methods should obey equal distance assumption, which 

describes the ideal landmark distribution for visual homing: If all the landmarks are uniformly 

distributed and located the same distance from the destination, the visual homing methods will exhibit 

the optimal performance. However, this assumption is unrealistic and always violated in practical 

applications, irregular landmark distribution will greatly reduce the performance of the visual homing 

algorithms, thus affecting the robot’s actual trajectory. 

To cope with the above problem, we propose an optimized landmark distribution method for the 

feature-based visual homing algorithms in this paper. We take the popular ALV method as the 

example and consider the SIFT features as the natural landmarks, the landmark distribution can be 
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improved to a nearly ideal state according to the image pixel distance difference and the scale 

information of SIFT, so that the better homing performance can be achieved. 

2. Average Landmark Vector (ALV) 

ALV is a classic visual homing algorithm inspired by biological navigation. In the ALV algorithm, the 

robot only memorizes the landmarks instead of the whole panoramic images, the landmarks are 

reduced to an average form (defined as the average landmark). By processing the average landmark, 

the two-dimensional home vector can be calculated, pointing from the robot’s current location to the 

destination. Among all the visual homing algorithms, ALV can has the most simple model with the 

least amount of computation, in the meantime, ALV can also produce a very precise home vector. 

The basic model of ALV can be described in figure 1. Taking the current image as an example, C is 

the robot’s current location, L1, L2, …, Ln are the n landmarks (i.e. SIFT features) extracted in the 

scene. 
1CL , 

2CL , …, 
nCL  are defined as the unit landmark vectors pointing from the current location 

to the corresponding landmarks.  

L1

L2

Ln
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CL1

CL2
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Figure 1. Basic model of ALV 

We set the center of the current image as the origin of the image coordinate system, the coordinates 

of the robot’s location can thus be (0,0)CP  , the image coordinates of the ith landmark Li are defined 

as ( , )i i iP x y . Therefore, the ith landmark vector at C can be computed by: 
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                                                               (1) 

The average landmark at C can then be calculated by averaging all the landmark vectors at C: 

1

1 n

i

i

CL CL
n 

                                                                 (2) 

Similarly, the average landmark at H can be calculated by averaging all the landmark vectors at H: 

1

1 n

i

i

HL HL
n 

                                                                 (3) 

Finally, the home vector h can be generated by subtracting CL  from HL : 

CL HL h                                                                  (4) 

3. Optimized Landmark Distribution 

The proposed method consists of two principles. To make the actual distribution of the landmarks 

closer to the ideal state, the method optimizes the landmark distribution from two aspects: the image 
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pixel distance and the frequency where landmarks appear in different directions. The models of the 

two principles are shown in figure 2. 
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(a)                                                               (b) 

Figure 2. The models of the principles. (a) The model of Principle 1. The distance from the image 

center to the red circle is d . (b) The model of Principle 2. 

3.1. Principle 1 

As shown in figure 2(a), based on the imaging characteristics of panoramic images, most of the 

landmarks are extracted and located nearby the horizon circle [11]. However, the image positions of 

some landmarks are very close or far from the image center, these landmarks will impact on the 

homing performance. Therefore, Principle 1 is proposed to eliminate such types of the landmarks. 

Assume that the image coordinates of the ith landmark are defined as (xi, yi). The image pixel 

distance of the ith landmark is defined as di: 

2 2 -1

i i id x y （ ）                                                              (5) 

The average image pixel distance of all the landmarks can be computed by: 

1

1 n

i

i

d d
n 

                                                                   (6) 

Then, the distance difference of the ith landmark can be obtained by: 

i id d d                                                                   (7) 

Principle 1 only preserves the landmarks with 0.3id d   (the gray area), and removes the 

landmarks with 0.3id d   (the white area). 

3.2. Principle 2 

As shown in figure 2(b), Principle 2 evenly divides the goal image into N sector rings, denoted as S1, 

S2, …, SN, respectively (we set N to 8). Assume that n landmarks are extracted, and the ith sector ring 

contains ni landmarks, Principle 2 firstly calculates the average landmarks in each sector ring: 

n
n

N
                                                                       (8) 

Generally, if each sector ring contains n  landmarks locating the same distance from the image 

center, the ideal distribution can be achieved. In Principle 2, the landmark amounts in each sector ring 
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is compared with n . For the sector rings whose actual landmark amounts are smaller than n , all the 

landmarks in these sector rings are preserved without further processing. Conversely, for the sector 

rings that contain more landmarks, Principle 2 will reduce the landmark amounts in these sector rings 

based on the scale information. 

A phenomenon is stated in [12] that if a certain SIFT feature has a larger value, the distance 

between the robot and the corresponding landmark is relatively closer. Therefore, when the two 

images are matched, the two SIFT features in the each matching pair have different scale values, this 

implies that the represented landmark has different distances to the two capture positions. Although 

we cannot obtain the exact distance values, we can qualitatively compare the difference of the above 

two distances. 

Since visual homing is a local navigation strategy for a small scale experimental area, for most 

landmarks, their distances to the robot will not change too much, resulting in small scale changes. 

Hence, For the sectors containing more landmarks, Principle 2 sorts all the preserved landmarks 

according to the scale difference from small to large, the landmarks with small scale difference are 

removed in sequence, and the removed number is the difference between the actual number of the 

landmarks and n . 

4. Experiments 

4.1. Panoramic Image Databases 

The experiments were performed based on the panoramic image databases collected at Bielefeld 

University. The capture environment of the databases is a 4.8m×2.7m indoor spaces, including 170 

capture positions, which are spaced 30cm apart. The robot equipped with a panoramic vision system 

captured the panoramic image at each capture position. We selected two versions of the database, 

including Original and Chairs. The Original version is the default condition of the environment. The 

curtains and doors are closed, the lights in the scene are turned off. The Chairs version is based on the 

Original version, three chairs are randomly set in the environment. Two samples of the panoramic 

image versions are shown in figure 3. 

             

(a)                                                      (b) 

Figure 3. Two samples of the panoramic image versions. 

4.2. Homing Performance 

We test the homing performance between the initial and improved ALV algorithms. To intuitively 

exhibit the effect of the algorithms, we arbitrarily selected a panoramic image from the Original 

version as the goal image, and the remaining 169 images were considered as all the possible current 

images. The home vectors were calculated between the goal image and these current images. Figure 4 

shows the visualization results of the initial and the improved ALV algorithm. (6,2) was set as the goal 

location.  
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(a)                                                                                       (b) 

Figure 4. Visualization results. Red square represents the goal location (6,2). Arrows represent the 

calculated home vectors. (a) Initial ALV algorithm. (b) Improved ALV algorithm. 

4.3. Average Angular Error and Return Ratio 

To quantitatively analyze the performance of the above two algorithms, we adopted two widely used 

performance metrics, called average angular error (AAE) and return ratio (RR). 

AAE indicates the average error between the ideal home vector and the actual home vector. Assume 

that the direction of the ideal home vector is denoted as 
ide , pointing from the current location to the 

goal location. The direction of the calculated home vector is denoted as 
act . The angular error (AE) 

can be computed by: 

( , ) ide actAE H C                                                               (9) 

AAE can thus be calculated by: 

1

1
( , )

pq

k

k

AAE AE H C
pq 

                                                           (10) 

Where Ck represents the kth current location. p and q respectively denotes the rows and columns of 

the capture location. According to the image databases, p is set to 17 while q is set to 10. 

RR shows the proportion of all the possible current locations that can successfully return to the 

destination. A dummy robot is created to simulate the movement according to the calculated home 

vector, the standard to decide whether a certain current location will become a successful homing 

location can be presented as follows: 

Step 1: Control the robot to move towards its nearest location according to the calculated home 

vector. 

Step 2: If the following two cases happen, jump to Step 4: 

    Case 1: The robot finally reach the pre-set destination. 

    Case 2: The robot moves more than 17+10=27 steps, this means the robot has moved more than 

half the circumference of the environment but still not reach the destination. 

Step 3: Continue to perform Step 1. 

Step 4: If Case 1 happens, we declare the tested current location is valid. Conversely, if Case 2 

happens, we declare the tested current location is failed. 

After all the current locations are tested according to the above steps. RR can be computed by: 

sT
RR

T
                                                                           (11) 

Where Ts indicates the number of the valid current locations. T indicates the total number of the 

current locations. According to the image databases, T is set to 169. 

Table 1 shows the corresponding AAE values, we set (6,2) from the Original version and (8,5) from 

the Chairs version as the home locations. 
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Table 2 and Table 3 shows the RR results for the two algorithms based on the two image versions. 

Three evenly distributed locations are selected as the goal location to obtain a general conclusion. 

Table 2. RR Results for Original Version 

Goal ALV Improved 

(2,8) 0.663 0.781 

(8,3) 0.805 0.828 

(15,1) 0.586 0.639 

 

Table 3. RR Results for Chairs Version 

Goal ALV Improved 

(2,8) 0.680 0.787 

(8,3) 0.799 0.834 

(15,1) 0.568 0.598 

5. Conclusions 

In this paper, we propose two principles to optimize the landmark distribution for visual homing. The 

landmark ditribution is optimized from the two aspects, including the image pixel distance and the 

frequency at which landmarks appear in different directions. After the landmarks are filtered, the 

optimized distribution are more close to the ideal state, satisfying the equal distance assumption. We 

take the popular ALV algorithm as the example, and perform a series of the experiments based on the 

panoramic image databases. Results reveal that the landmarks optimized by the proposed principles 

can make the ALV algorithm exhibit better homing performance than the initial state, the robot can 

return to the specified destination from more possible locations with more accurate and robust home 

vectors. 
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